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Abstract

Retinitis pigmentosa is an inherited retinal disease caused by damage to photoreceptor cells. Diagnosis and staging of
this disease are crucial for early intervention and effective treatment planning. In this study, the amplitude and latency
features of N1, P1, and N2 waves obtained from multifocal electroretinogram responses over five rings were used with
binary and multiclass classification methods using four different machine learning algorithms to distinguish retinitis pig-
mentosa patients from healthy individuals and to evaluate the stages of the disease. Binary classifications were performed
for six different groups, and the Naive Bayes (NB) algorithm performed the best on all evaluation metrics, achieving 99%
accuracy in distinguishing healthy individuals from each disease stage. Furthermore, multiclass classification was applied
in two different steps. In the first step, the Naive Bayes model achieved 82% accuracy in four-class classification, includ-
ing healthy individuals. Considering the near-perfect separability of healthy individuals, in the second step, a three-class
classification including only disease stages was performed, and the model achieved 76% accuracy. These results indicate
that the proposed approach provides objective and accurate staging for retinitis pigmentosa and can serve as a valuable
decision support system to assist ophthalmologists in clinical practice.

Keywords Retinitis pigmentosa - Multifocal electroretinogram - Support vector machine - Naive Bayes - Logistic
regression - Multilayer perceptron neural networks

Introduction

Retinitis pigmentosa is a type of inherited retinal disease
caused by damage to photoreceptor (cone and rod) cells in
the retina. This disease affects approximately one in 3—4
thousand people worldwide [ 1-3]. In Tiirkiye, it is estimated
to affect 15,000-20,000 people due to the prevalence of
consanguineous marriages [4]. This disease has a long-term
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impact on individuals, typically progressing over a period
of 10 to 30 years. It consists of three stages: early, mid, and
advanced. Early-stage patients may have decreased night
vision and narrowing of peripheral vision. In mid-stage
patients, the decrease in night vision is more pronounced
than in the early stage, and patients notice a decrease in
peripheral vision. Finally, advanced-stage patients lose their
central visual field [5]. Currently, there is no definitive cure
for the disease, but there are some approaches to delay the
progression of the disease. These approaches vary at dif-
ferent stages of the disease. In patients with retinitis pig-
mentosa, pharmacologic treatments in early-stage, stem cell
therapies in mid-stage, and gene therapy in advanced-stage
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can help delay disease progression [6—8]. These treatment
modalities can potentially reduce the effects of retinitis pig-
mentosa and preserve visual function. Therefore, it is crucial
to accurately identify the stages of the disease to improve
the quality of life of individuals with retinitis pigmentosa
and to determine appropriate treatment strategies.

In recent years, imaging and electrophysiologic tech-
niques such as Optical Coherence Tomography Angiog-
raphy (OCTA) [9], Electroretinogram (ERG) [10], Visual
Field (VF) [11], Visual Acuity (VA) [11], and Multifocal
Electroretinogram (MfERG) [12] have been widely used
by ophthalmologists in the evaluation of retinitis pigmen-
tosa. Specifically, the MfERG technique is crucial because
it allows both the extraction of electrophysiologic informa-
tion and the topographic mapping of different regions of
the retina. In this way, the effects of the disease on different
regions of the retina and the monitoring of disease progres-
sion can be analyzed in more detail. The MfERG technique
usually divides the retina into 61 or 103 hexagonal sectors,
according to International Society for Clinical Electro-
physiology of Vision (ISCEV) standards. These hexago-
nal regions are rapidly stimulated using a pseudo-random
black/white sequence (m-sequence), generating individual
responses for each hexagon. Standard MfERG responses
(first-order responses) consist of three fundamental waves.
The first of these waves is the N1 wave, which is an initial
negative deflection; the second is the P1 wave, which occurs
after the negative deflection and has a maximum positive
peak; and finally, the N2 wave, which is the second negative
wave after P1 [13].

Previous studies have noted external retinal electroreti-
nographic changes in retinitis pigmentosa patients, but in
all of these studies, the amplitudes and latencies of MfERG
responses were analyzed by statistical methods, and the
results differed fundamentally [12, 14—18]. In this study, we
aimed to distinguish individuals with retinitis pigmentosa
from healthy individuals and to classify the stages of the
disease by practically extracting the amplitude and latency
features of N1, P1, and N2 waves from MfERG responses.

Retinitis pigmentosa is a multiclass disease, and accurate
staging of this disease is crucial for early intervention that
can delay or prevent its progression. However, the staging
of disease is often based on clinical examinations and doc-
tors’ experience. This can lead to misdiagnosis of stages
and unnecessary waste of time. Therefore, it is becoming
increasingly important to use an effective decision support
system to assist ophthalmologists with an accurate and rapid
diagnosis. These decision support systems can help predict
its stages by evaluating objective data and using machine
learning algorithms.

The number of studies using machine learning techniques
to diagnose and stage retinitis pigmentosa is extremely
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limited in the literature. The scarcity of such studies sug-
gests that its diagnosis and staging are still based on more
traditional methods in the clinic. However, recent studies
on retinitis pigmentosa using these techniques have gener-
ally focused on early detection or segmentation. We briefly
review these studies here. Chen et al. presented pre-trained
Inception Resnet V2, Xception, and Inception V3 deep
learning-based transfer learning methods to classify retinitis
pigmentosa patients and control groups using color fundus
images. They found that the highest classification accuracy
among these three transfer learning methods is the Xcep-
tion method, with 96.00% [19]. To detect the presence of
retinitis pigmentosa, Masumoto et al. used ultra-widefield
pseud color (UWPC) and ultra-widefield autofluorescence
(UWAF) images and evaluated the performance of convo-
lutional neural networks. As a result of their experiments,
they obtained 99.1% and 99.3% specificity and sensitiv-
ity for UWPC images and 99.5% and 100% for UWAF
images, respectively [20]. Iadanza et al. extracted features
from pupillometry data to diagnose retinitis pigmentosa dis-
ease in pediatric individuals. They classified these features
using two support vector machine (SVM) algorithms, one
for each eye. Subsequently, they combined the two SVM
algorithms into an ensemble model and achieved an accu-
racy of 84.6% [21]. On the other hand, Yassin et al. inves-
tigated the superimposition of different multimodal images
using manual alignment and Artificial Intelligence (Al) in
individuals with retinitis pigmentosa. They used infrared
images from microperimetry, spectral domain OCT and
near infrared images from a scanning laser ophthalmoscope.
As a result of this study, it was determined that Al aligned
infrared images more successfully than the manual align-
ment method in retinitis pigmentosa patients [22]. Wang et
al. proposed two deep learning-based models, U-Net and
sliding window (SW), for automatic segmentation of retinal
layer thicknesses using B-scans of spectral domain OCT of
individuals with retinitis pigmentosa. They then combined
these models to create a hybrid model. They found that
this hybrid model has superior performance compared to
U-Net and SW in measuring the retinal layer thickness in
OCT images of retinitis pigmentosa patients [23]. In another
study, Arsalan et al. developed RPS-Net, a deep learning-
based semantic segmentation network specifically designed
to detect retinal pigment markers automatically and retinitis
pigmentosa detection using fundus images. They reported
that this deep learning network provides superior segmen-
tation performance compared to traditional deep learning
models [24]. As seen in these papers, previous studies have
focused on detecting the presence of retinitis pigmentosa
disease using machine learning and accurately classifying
the associated structures. However, there are no studies on
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its staging using MfERG techniques and machine learning
algorithms.

In addition, two studies in the literature performed retini-
tis pigmentosa staging based on manual methods. When we
look at these studies, a study conducted by Iftikhar and col-
leagues aimed to classify the severity of retinitis pigmentosa
disease. In this study, VF width, VA, and spectral domain
OCT ellipsoid zone parameters were used. These param-
eters were scored on a scale of 0—5 based on the distribution
of the disease, creating a scoring criterion. A cumulative
criterion (0—15) was obtained to grade individuals with reti-
nitis pigmentosa from zero to five. As a result of the study,
individuals with retinitis pigmentosa were divided into five
groups based on cumulative criteria, and the scores asso-
ciated with the methods were found to be statistically sig-
nificant when compared to each other [25]. In another study,
Oner et al. classified the severity of the disease similarly
to the method applied by Iftikhar et al. by adding MfERG
responses P1 amplitudes to VA, VF (diameter), and OCT
(ellipsoid zone width) tests. As a result, in this study, it has
been stated that the stages of retinitis pigmentosa are signifi-
cantly associated with scores related to the parameters of the
tests. As understood from the above-mentioned studies, its
staging has been performed manually, employing multiple
techniques in this process [26]. In this study, by combining
the amplitudes and latencies of the N1, P1 and N2 waves
of MfERG responses, we used machine learning classifiers
to both automatically distinguish individuals with retinitis
pigmentosa from healthy and automatically classify it into
its stages.

However, various machine learning classifiers have been
used many times in the literature to stage diseases such as
Alzheimer’s [27], Parkinson’s [28], Diabetic Retinopathy
[29], and Obesity [30]. It has been reported that these clas-
sifiers have achieved successful results in staging these dis-
eases. Among these, the most used classifiers are Support
Vector Machines (SVM) and Multilayer Perceptron Arti-
ficial Neural Network (MLP-ANN). In the current study,
in addition to these classifiers, Logistic Regression (LR)
and Naive Bayes (NB) classifiers, which give successful
results in binary classification, were applied and compared
(Figs. 10-15).

The main objective of this study was to help ophthal-
mologists develop an effective method that automatically
diagnoses individuals with retinitis pigmentosa disease and
classifies them into disease stages. To achieve this goal,
amplitude and latency features were extracted from MfERG
responses. Then, these features were used as feature vectors
in SVM, NB, LR and MLP-ANN algorithms for binary and
multiclass detection of retinitis pigmentosa.

Materials and methods

The approach proposed in this study consists of four main
stages: MfERG data collection, ring structure generation,
feature extraction, and classification. A comprehensive
illustration of this configuration is shown in Fig. 1, and the
subsequent subsections go into great depth on the steps.

Description of the data

All study procedures were conducted in accordance with
the Declaration of Helsinki and approved by the Acibadem
Mehmet Ali Aydinlar University Medical Research Evalua-
tion Board (ATADEK-2023-16/553). The data used for this
study were obtained retrospectively from the Department of
Ophthalmology, Acibadem Kayseri Hospital, and the diag-
nosis of retinitis pigmentosa was confirmed using ocular
history, fundus photographs, VF, OCT, and International
Society for Clinical Electrophysiology of Vision (ISCEV)
[13] standardized MfERG and ERG tests. The study included
98 eyes of 77 patients with retinitis pigmentosa and 34 eyes
of 19 healthy individuals. In line with the inclusion criteria,
individuals with typical findings on fundus examination,
consistent loss on the Humphrey 30—2 visual field test,
and the diagnosis of the disease supported by the MfERG
test were recruited; however, individuals with additional
eye defects such as uveitis, cataract, and glaucoma were
excluded. Due to the use of retrospective data in the study,
previous staging results with VA, VF, OCT, and MfERG
modalities were reviewed by an expert ophthalmologist, and
patients were divided into three groups: early stage (33 eyes
of 19 individuals), mid stage (31 eyes of 27 individuals),
and advanced stage (34 eyes of 32 individuals). To prevent

Feature Extraction

Acquisition of Generation of Rings

MfERG —>
recordings

_)Extracting the amplitude-
R1, R2, R3, R4 and latency features N1, P1
R5 waves and N2 from each ring

Classification Binary Class
. HG/ES, HG/MS, HG/AS
Support Vectors Machine ES/MS. ES/AS. MS/AS
—> Naive Bayes
Logistic Regression Hg/lélél/%ﬁlg?: S'
Artificial Neural Networks ESIMS/AS

Fig. 1 Block diagram of the proposed work (Healthy Group-HG; Early Stage-ES; Mid Stage-MS; Advanced Stage-AS)
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Table 1 Demographic characteristics of healthy group and retinitis pigmentosa patients

Subjects Total Subjects (Number of eyes) Male/Female Age (MeantSD)
HG 19 (34) 13/6 355+ 13.8
ES 19 (33) 8/11 39.8 £20.3
MS 27 (31) 17/10 359+ 14.8
AS 32 (34) 23/9 38.6+ 159

Healthy Group-HG; Early Stage-ES; Mid Stage-MS; Advanced Stage-AS

Fig. 2 61 hexagonal sectors

possible bias in the evaluation process, a blind evaluation
was performed by a physician and the physician performed
an objective evaluation without knowing which group the
signals belonged to. With this method, bias in the clinical
evaluation process was minimized, and a more reliable clas-
sification was achieved. Table 1 presents the demographic
and clinical characteristics of the individuals who partici-
pated in the study.

Acquisition of MfERG recordings

MfERG recordings were obtained using the Metrovision
MonPackOne system (France) according to ISCEV [13]
procedures. Subjects were kept in the test room to adjust
to the light and then their pupils were dilated. After topical
anesthesia, a contact lens electrode was placed on the numb
pupils for recording. The screen of the MonPackOne stimu-
lus system was positioned 33 cm from the subject. The stim-
ulator is composed of 61 hexagon sectors. The luminance
of each hexagonal sector was independently set to 100 cd/
m?2 for white hexagons and 1 cd/m2 for black hexagons.

@ Springer

The stimulus frequency was fixed at 17 Hz [31-33], and the
frame rate of the system is set to 75 Hz in accordance with
ISCEV standards [13, 34]. The sampling rate was 960 Hz,
and each MfERG response length was 96 samples per 100
ms. To ensure signal reliability, at least 5000 responses were
recorded from each eye of the participants, with noise levels
carefully maintained below 5 kiloohms.

Generation of rings and feature extraction

In this study, the first-order MfERG kernel was used.
According to ISCEV standards, 61 hexagon sectors were
grouped into five rings from the center to the periphery as
Ringl (R1-1 hexagon), Ring2 (R2-6 hexagon), Ring3 (R3-
12 hexagon), Ring4 (R4-18 hexagon), and Ring5 (R5-24
hexagon). The position of these rings was shown on Fig. 2.
Their average responses were obtained (Fig. 3). The ampli-
tudes and latencies of the N1, P1 and N2 waves of each ring
were determined using the findpeaks function developed
by Matlab (R2023a-trial version). The N1 wave, usually
a negative peak, was calculated by finding the minimum
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Fig.3 Rings (R1, R2, R3, R4,
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value within the temporal window between 9 and 32 ms.
The P1 wave is followed by a positive peak and is obtained
by determining the maximum value in the range of 32-50
ms. The N2 wave is the second negative peak after P1 and
was calculated by finding the minimum value in the range
of 50—70 ms. In total, 30 features of 15 amplitudes and 15
latencies were extracted. These features were used for the
feature vector of the classification algorithms [34, 35].
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8 ?
1 N

Time (ms)

Figure 4 presents an example of the parameters N1, P1,
and N2 of the rings. Table 2 shows the N1, P1, and N2
amplitude and latency values of the MfERG responses of
some subjects.

Classification algorithms

After extracting the features from the MfERG responses
with the method mentioned above, SVM, NB, LR and

@ Springer



Physical and Engineering Sciences in Medicine

Koudrer =] ‘opmyrjdwre=e {gy-23e)S POoUBAPY ‘SIN-938IS PIA ‘SH-9Fe1S A1ey ‘DH-dnoin Ayjjesy

€pL vLL LL YL L°LL 08 609 €09 €L 199 19 919 |
8°88 8°L8 €L LY i S°LL 65 9°8S 1°89 6°€9 ¥'79 €19 2
¥18 vEL YL L'8S €69 L 809 809 669 §°€9 ¥'79 §79 T |
9°L8 98 968 e 69 YL L9 9°¢9 6°0L S°L9 8¢9 9b9 o
668 98 an 69 6vL €9L €IL Syl Syl an L SIL [R11 (D TN
89S 89 T'L9 L6S ‘8¢S 6°'L9 8t Sty ses 9% 9cy 3% (2 |
€69 (s 619 see L¥S 8°6S YTy €1y 8°6¥ St Shy a3y 12
989 €9 19 8¢t 9°6¥ €56 24 8T £op €St Lv¥ v'ey I |
$IS 8°T¢ §°69 €69 9Ly S 8t 6°cy 805 Ly €St 9cy 4
69 9°L9 ¥ss 8°1S L€S €95 ves T'es LYS 8°0S SIS %% &1 M 1d
81 YT 89% ST 9°9¢ 69T 6°ST ST vee 9LT €6t st Sd
vsy 1°s¢ 66T L61 8yl L0€ v'sT 6°€T 3 LT 1'9T ST 12|
8°C¢ S'Ly Lv¥ €62 LTE L8T 69T 16T 6°ST €92 89T 84T I |
9'1¢ 1'1¢ 86T L6T 8T s¢ v'LT €T 87T §9z ¥'9C 8T 4
T 9¢T 607 9ce 6°1¢ 661 L6 9T 114 84T 8¢ 84T &1 M IN
6°cL- 8L~ 861~ v6- Shp- 9°0¢- 89t~ e 0LT T6vl- TS11- LLIT- A
8L- 861~ 6'8C- rhl- 68- L'89- e LSt~ $8¢- 8€T1- $86- 0601~ 2
19- T8I- S65- 102- LST- 965~ 9L¢- 8T~ 60¢- £86- 106 TLOT- €
061- 6C1- €LT- 601- 8¢~ L9T- 65t~ la L9€- S101- 986~ L101- 4
9¢6- rhe- 88C- 019- T6T1- 029~ €1L- 8LL ¥85- 926" 9¢pI- €201~ ™ (8) TN
S‘Ly €9L L¥E €68 9°6Y €16 1S 605 €re 8191 €sTI LOVI A
86 01 9pL SI1 901 166 c6b 00S 16€ 44d! 0S11 €6T1 2
81 €66 806 681 961 8T 65t 916 LTy 60¢€1 €L01 811 I |
€zl 607 8ST ST 9sY €LT 9L¢ 114 ¥0S 304! voTI 90¢€1 w
9S 909 843 8% 68T1 129 89L 799 ¥SS €LTI €591 ¥8€T ™ (® 1d
Lisg- €79 TLI- LS 661~ T 81T YT 681- 19L- S19- €89- 3
9T~ I°e1- 8y 961~ ¥€9- 1'oL- 9L1- 6€T- 81 I16L- S¥9- LTL- 2
L¥1- LT1- I¢- €ll- sI1- 6°0S- ¥0¢- 99¢- - 18- 6LS- 919~ I |
9v6- €CI- sel- 0Ce- 062- 0Tt SLI- sTe- (445 89L- TIL- TIL- 4
Lig- 8P 6¢p- 687~ W9- 989~ Ip- Ot~ TIs- LETT- °911- 066- &1 (®) IN
67 LI 6 97 61 9 [F4 41 v [ ST 4
squInN uou_d:w sJquin auo_ﬁsm squInN auu_ﬁ:w sRquInN auo_ﬁ:m
SV SIN SH DH mmﬁm JO sainjeaq %o:uumu— pue ov:ﬁawﬁ/&

s109[qns pajodas Ajwopuel Jo (sur) saroudre] pue (AH) sopmidwe gN pue ‘1d ‘IN ¢ d|9eL

pringer

As



Physical and Engineering Sciences in Medicine

MLP-ANN classifiers were used to evaluate the binary and
multiclass results. The algorithms used are briefly described
below.

Support vector machines (SVM)

SVM is an machine learning algorithm developed by Vap-
nik and Cortes [36] that is particularly effective for binary
classification problems. This algorithm is mainly used to
discriminate data points belonging to two classes by an
optimal hyperplane. To find this optimal hyperplane, SVM
applies the maximum margin principle. Margin refers to the
distance between the support vectors, and the maximum
margin is achieved when creating the best separation plane
between two classes.

Different kernel functions are used depending on whether
the features are linear. The Linear kernel function is pre-
ferred if the features can be linearly decomposed. However,
if the features cannot be linearly decomposed, methods such
as Polynomial, Gaussian, and Sigmoid kernel functions are
used. These different kernel functions increase the flexibil-
ity of SVM, allowing better results for various data struc-
tures and classification problems. Figure 3 shows a linear

whx; +b=0. (1)

Where j is the number of instances (N) in the dataset, x; is
the features in the hyperplane, w is the weight vector, and
b is the bias value of the hyperplane. The hyperplane if the
dataset consists of a linearly separable structure with class
labels y € {1,—1}:

whaj+b> 1, y=1 2)
wha;+b< 1, y=—1. 3)

is expressed as. Combining the entire dataset, i.e., Eq. (2)
and Eq. (3), results in Eq. (4)

yj (whay+b) > 1 j=12,34,... .n. 4)
The optimal hyperplane is between the support vector
points and parallel lines, as shown in Fig. 5. The margin
of this hyperplane is expressed as 2/|| w?l. Then, using

the Lagrange coefficients ( A ), the optimal hyperplane, and
Eq. (4), the decision rule in Eq. (5) is obtained.

kernel function’s support vectors and optimal hyperplane. Ay = f (z) = szgn(z Ajyi{x.a;) +b). (5)
linear hyperplane is expressed as in Eq. (1). ’
Fig.5 Support vectors and
optimal hyperplane of the linear wix+b=1
kernel function N
Support Vectors

Optimal Hyperplane

whx+b=-1

Support Vectors
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Naive Bayes (NB)

NB, based on Bayes’ theorem, is a simple machine learning
algorithm used to solve classification problems. As a basic
principle, the NB algorithm performs probabilistic classifi-
cation by treating the features in the dataset independently.
That is, it works under the assumption that each feature
is evaluated independently of the other features in class
determination. In this way, the probabilities of the features
belonging to the classes are calculated, the class with the
highest probability is assigned to the data point, and clas-
sification is performed [37]. The mathematical calculation
of the NB algorithm is given in Eq. (6):

_ P(L/K)P(K)

P(K/L) = P (6)
Where P (K) is the probability of K; P (L) is the prob-
ability of L; P(K/L) is the probability of K based on L;
P(L/K) is the probability of L based on K.

Logistic regression (LR)

LR [38] is an algorithm that establishes a polynomial equa-
tion between multiple independent variables and a depen-
dent variable and is used to classify data. This algorithm
uses a sigmoid function, shown in Eq. (7), which estimates
the probability values of the dependent variable between 0
and 1.

1

ho (%) = T =@oraian @

In this equation, 6 represents the weights, and = repre-
sents the number of features in the dataset. A cost function
is usually used when the LR algorithm learns the weights
according to the dataset. The cost function is a function
that evaluates the accuracy of the learned weights and mea-
sures the performance of the algorithm. The LR algorithm
minimizes the cost function to obtain the best weights. This
function is expressed in Eq. (8).

J0)= L[Syt (p ()~ (1—9) Jos(1—ps ()] (8)

Where m represents the amount of data in the dataset, and
y represents the actual class labels. The LR model train-
ing is completed once the cost function reaches the optimal
value. Then, the probability values, the model outputs, are
compared with the threshold values to predict the classes
according to Eq. (9) and Eq. (10).

Ifh 6 (z)<0.5;youtput value 0 )
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Ifh_6 (z)> 0.5, the output value of yis 1. (10)

Multilayer perceptron artificial neural network (MLP-ANN)

Artificial Neural Networks (ANN) is a machine learning
model developed by mimicking the working principle of
neurons in the human brain. This model is a powerful tool to
solve complex problems in datasets efficiently and quickly.
MLP-ANN [39] is a supervised neural network algorithm
for classifying nonlinear models. The architecture of this
algorithm consists of an interconnected input layer, hidden
layer, and output layer, as shown in Fig. 6. Feedforward and
feedback propagation are applied between these layers to
perform the learning process in which weights and biases
are automatically updated.

The formulas in Eq. (11) usually represent classifica-
tion with the MLP-ANN algorithm. Where 6 represents
the weights, © = {z1, 22, 23, ... M} the feature vector,
y the target vector, b the bias term, and o the activation
function.

y=f(@)=0 () Miz.0,+0). (11)

Training procedure and performance metrics for
classifiers

The performance of SVM, NB, LR, and ANN classifiers
was evaluated using the k-cross validation method due to
the limited dataset and to avoid overfitting. This method
divides the dataset into k subsets during training and uses
each subset as the training and test set. The model’s perfor-
mance is evaluated for a different subset at each iteration.
At the end of this process, k-test results are generated, and
the average value of the results gives information about the
model’s performance. In this study, the 10-fold cross-vali-
dation method was repeated 20 times to evaluate the perfor-
mance of the classifiers more reliably (Fig. 7). Accordingly,
for each fold, the dataset was split into training and test sets
in a 9:1 ratio. Repeating the entire cross-validation process
20 times helped to minimize performance variability due
to random data partitioning and ensured more stable and
statistically reliable evaluation metrics. The performance
metrics, including sensitivity, precision, accuracy, F1 score,
specificity, and receiver operating characteristic area under
the curve (ROC-AUC) score, obtained in each iteration,
were averaged to minimize the effect of random variation in
the training and test sets.

In this proposed work, to classify the dataset more
efficiently and solve complex problems in this set more
straightforwardly, the linear kernel function is used in the
SVM algorithm, and the regularization parameter C is set to
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Fig.6 An example of ANN
Structure

[ Input Layer ]

1. For NB, class distributions were calculated using equal
prior probabilities according to the number of samples of
classes in the dataset. Different iteration numbers (100, 500,
1000, and 1500) were tried for the LR algorithm, and 1000
iterations were used to compare the best classification result
with other algorithms. For MLP, two hidden layers with 10
nodes each were used, and the learning rate was set to 0.001.

The metrics used in this study to evaluate the performance
of classification algorithms are precision, recall, accuracy,
F1 score, specificity, and ROC-AUC score. Precision is a
metric that expresses the ratio of correct and positive predic-
tions to total positive predictions among the instances in the
dataset. Recall is calculated as the ratio of correct and posi-
tive predicted instances to all true instances. Accuracy is the
ratio of correctly predicted samples to the total amount of
data in the dataset. The F1 score is a performance criterion

[ Hidden Layer |

[ Output Layer ]

for machine learning, which is the harmonic means of preci-
sion and accuracy. Specificity is a performance metric that
measures the model’s ability to correctly identify negative
samples by measuring the ratio of true negatives among all
true negative samples. The ROC-AUC score is a metric that
measures the classifier’s ability to distinguish between dif-
ferent classes by evaluating the relationship between the
true positive rate and the false positive rate. The mathemati-
cal equations for precision, recall, accuracy, F1_score, and
specificity are shown below:

. TP
Precision = W (12)
TP
Recall = m (13)
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Fig. 7 The diagram of k-fold cross-validation with k=10
TP+ FN

A = 14
Y = TP Y TN+ FP+ FN (14
Sensitivity x Precision
F1 S =2
—oeore % (Sensitivity + Precision) )
Cpe TN
Speci ficity = TN FP (16)

Here, TP represents true positive samples, FP represents
false positive samples, TN represents true negative samples,
and FN represents false negative samples.

Experimental results

In this section, we present a comparison of the amplitude
and latency parameters obtained from MfERG responses
of healthy and retinitis pigmentosa subjects. We also report
results for binary and multiclass classification of retinitis
pigmentosa using machine learning models including LR,
NB, SVM, and MLP-ANN. Our approach is the first study
to evaluate MfERG amplitude and latency parameters and
use them for automatic staging of this disease.

However, to implement the experimental framework,
different software tools were used at various steps of the
work. In this regard, the feature extraction and visualization
steps in the study were performed using MATLAB. In addi-
tion, the results of classification processes and performance
metrics were obtained using the Scikit-learn library in the
Python programming language.
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Performance 2 the average

»{ performance of
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[

Performance 10

Comparison of MfERG responses of subjects

In this proposed study, five rings (R1, R2, R3, R4, RS5) are
created using the MFERG responses and the commonly used
amplitude and latency features N1, P1 and N2 are extracted
for each ring. Since each ring has three amplitude and three
delay features, a total of 15 amplitude and 15 latency fea-
tures were extracted. These amplitude and latency features
were visualized and compared for the healthy, early, mid
and advanced groups using the box plots in Figs. 8 and 9.
Accordingly, healthy individuals had higher N1, P1 and N2
wave amplitudes and shorter N1, P1 and N2 wave laten-
cies than retinitis pigmentosa patients. Moreover, advanced
stage showed relatively lower amplitude and higher latency
in all rings compared to early and mid-stage. These results
suggest that the amplitude and latency characteristics of
N1, P1 and N2 waves are the most discriminative features
for classifying healthy individuals and retinitis pigmentosa
stages.

Binary classification results

Since all extracted features demonstrated distinctive charac-
teristics, they were subsequently selected as inputs for LR,
NB, SVM, and MLP-ANN classifiers. The performance of
these classifiers was evaluated using accuracy, precision,
sensitivity, F1_score, specificity, and roc-auc score met-
rics. Figures 10-15 demonstrated the performance metrics
results for six classification types, namely: healthy group
vs. early stage, healthy group vs. mid-stage, healthy group
vs. advanced stage, early stage vs. mid-stage, early stage
vs. advanced stage, and mid-stage vs. advanced stage. Com-
pared to other classifiers, the NB algorithm achieved the
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Fig. 8 Comparison of 15 amplitude features for healthy group (HG), early stage (ES), mid-stage (MS), and advanced stage (AS)

highest accuracy rates of 0.99, 0.99, 0.99, 0.8441, 0.9811,
and 0.7901 for the six classification types, respectively. This
algorithm also gave the highest results in terms of preci-
sion, sensitivity, Fl-score, specificity, and roc-auc score
among all classification types. The results revealed that the
proposed features and classification algorithms, especially
NB and SVM, were effective in accurately discriminat-
ing healthy individuals from retinitis pigmentosa stages in
binary classification tasks. Furthermore, within the retinitis
pigmentosa group, classification between early and mid-
stages and between early and advanced stages achieved
higher results compared to other mid- and advanced-stage
classifications.

Multi-class classification results

In this study, in addition to binary classification tasks,
multi-class classification tasks were performed to evaluate
the effectiveness of the proposed features in discriminat-
ing between healthy individuals and retinitis pigmentosa
stages. Two classification steps were designed: a four-class
classification including the healthy group, early stage,

mid-stage and advanced stage, and a three-class classifica-
tion including only retinitis pigmentosa stages (early, mid
and advanced).

Figure 16 presents the results of the LR, NB, SVM, and
MLP-ANN models for the four-class staging task, includ-
ing the healthy group, early stage, mid-stage, and advanced
stage categories. According to the graph, the NB model out-
performed the other classifiers in all metrics, achieving the
highest overall performance with an accuracy of 0.8232,
precision of 0.8563, recall of 0.8232, Fl-score of 0.8393,
specificity of 0.9214, and roc-auc score of 0.956. On the
other hand, Fig. 17 displays the classification results for the
three-class staging task focusing only on retinitis pigmen-
tosa stages (early, mid, and advanced stages), excluding the
healthy group. This exclusion is based on the high separabil-
ity of healthy individuals observed in binary classification
tasks. In this classification step, NB achieved the highest
scores in all evaluation metrics with an accuracy of 0.7568,
precision of 0.7954, recall of 0.7568, F1 score of 0.7754,
specificity of 0.788, and roc-auc score of 0.9083.
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Fig. 9 Comparison of 15 latency features for healthy group (HG), early stage (ES), mid-stage (MS), and advanced stage (AS)

Fig. 10 Healthy group vs. early-stage classification results
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Fig. 11 Healthy group vs. mid-stage classification results
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Fig. 13 Early vs. mid-stage classification results
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Fig. 17 Three-class classification results
Discussion

Electrophysiological tests, used to provide an objective
assessment of the visual system, are fundamental elements
of clinical practice. These tests provide important informa-
tion for the diagnosis and monitoring of diseases by measur-
ing electrical activities in different parts of the eye. Previous
research has shown that the time and frequency domain fea-
tures of MfERG responses, one of these electrophysiological
tests, can be used to assess various diseases. For example, in
the study by Boquete et al., a method based on neural net-
works was proposed to determine glaucoma by extracting
13 morphological features from the time domain of MfERG
responses. It has been stated that the use of these features
has provided effective results in successfully distinguish-
ing individuals with glaucoma from the control group [40].
Brandao et al., on the other hand, analyzed the responses of
two flash MfERG using discrete wavelet transformation to
distinguish glaucoma from healthy controls, and the results
were reported to be statistically significant [41]. Boquete et
al., investigated the ability of MfERG responses to diagnose
early-stage multiple sclerosis (MS). For this, they analyzed
the amplitudes and latencies of MfERG and generated a
signal from control individuals. As a result, they stated that
the parameters of MfERG are significant in distinguishing
between MS and healthy controls [35]. In another study,
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Lopez-Dorado et al. extracted features by applying Empiri-
cal Model Transform (EMT) and Continuous Wavelet Trans-
form (CWT) to MfERG responses and used these features to
classify controls and MS [42]. The above studies show that
the attributes of MfERG responses have significant poten-
tial. In light of these, we have developed a machine learning
model for early diagnosis and staging of retinitis pigmen-
tosa disease using temporal features extracted from MfERG
responses for the first time. Our results show that the model
is successful in classifying this disease and can help in stag-
ing the disease.

The aim of this study is to present an efficient method
to classify individuals with retinitis pigmentosa into both
binary and multiclass stages using time features (ampli-
tudes and latencies) of MfERG responses in combination
with machine learning algorithms. However, several studies
have examined various parameters of MfERG responses to
assess outer retinal function in healthy subjects with retinitis
pigmentosa. When these studies were reviewed, Han et al.
found that only the mean amplitudes and latencies of N1,
P1, and N2 waves of the R1 and R2 rings were decreased
in retinitis pigmentosa compared to healthy individuals
[14]. On the other hand, Giambene et al. used the ampli-
tude and latency parameters of the mean Pl wave from
MITERG responses to compare generalized retinitis pigmen-
tosa, sector retinitis pigmentosa, and healthy individuals.
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They reported that the amplitude of the mean P1 wave was
reduced and the latency was delayed in generalized retini-
tis pigmentosa compared to sector retinitis pigmentosa and
healthy individuals [12]. As seen in these studies, retinitis
pigmentosa and healthy individuals can be differentiated by
different parameters of MfERG responses. In this article, we
analyzed MfERG responses in the time domain to evaluate
healthy subjects and retinitis pigmentosa stages. In accor-
dance with ISCEV standards [13], we extracted all features
of MfERG responses (amplitudes and latencies of N1, P1
and N2 waves of R1, R2, R3, R4 and R5). We observed
a significant decrease in the amplitudes and a significant
increase in the latencies of N1, P1, and N2 waves of all rings
in the stages of retinitis pigmentosa compared to healthy
groups (Figs. 8 and 9). These results are consistent with pre-
vious studies and confirm that retinitis pigmentosa reduces
the field of view.

However, a previous study reported that MfERG is use-
ful in advanced stages of retinitis pigmentosa disease [43].
In addition, Moon et al. divided patients with this disease
into three different groups according to OCT images and
measured the mean amplitude and latency parameters of
N1 and P1 in rings 1 and 2. In this study, they found that
these parameters were significantly different between the
three groups [44]. In this study, we analyzed the ampli-
tudes and latencies of N1, P1, and N2 waves in all rings
between the stages of retinitis pigmentosa. Among these
stages, Advanced stages showed relatively lower amplitude
and higher latency in all rings compared to early and mid-
stages. We can consider our results as close to the findings
in the literature. In conclusion, in this study, all amplitude
and latency features of the N1, P1, and N2 waves of the
rings (30 features in total) were included in the investiga-
tion due to their high discriminative ability in distinguishing
both individuals with healthy groups and retinitis pigmen-
tosa and the stages of this disease.

When the studies on retinitis pigmentosa staging in the
literature so far were examined, it was observed that various
structural and functional techniques were used for staging
in the studies of Iftikhar et al. [25] and Oner et al. [26].
Especially, as emphasized in the studies of Oner and Kahra-
man, MfERG parameters gave successful results in its stag-
ing. However, this approach is time consuming because it is
manual and involves multiple techniques. In this study, we
present a feasible approach for early diagnosis and its stag-
ing by analyzing the rings generated from MfERG responses
and using them with machine learning algorithms.

In recent years, studies based on machine learning algo-
rithms focusing on different imaging methods in patients
with retinitis pigmentosa have gained attention in the litera-
ture. For example, in the study by [22], it has been reported
that an automatic alignment technique based on Al utilizing

multimodal imaging techniques in individuals with retinitis
pigmentosa, was successful compared to the manual align-
ment technique. In [23]’s study, the thickness of retinal
layers in OCT images was automatically segmented using
a deep learning architecture. In addition, in [24, 45], and
[46], deep learning based detection of pigment markers in
fundus images for the analysis of retinitis pigmentosa was
performed and high performance was achieved for the its
diagnosis. In two other studies, visual function in individu-
als with retinitis pigmentosa was successfully predicted
using deep learning architectures [47, 48]. These studies
show that imaging techniques and machine learning algo-
rithms have significant potential for the analysis of retini-
tis pigmentosa. However, remarkably, these studies did not
focus on tests that objectively assess the retina and provide
functional measurements. Thus, in the current study, we
used MfERG responses to determine the stage of retinitis
pigmentosa, which provides a more detailed examination of
retinal function.

As a result of the literature review, three studies were
identified that applied machine learning algorithms to auto-
matically distinguish between healthy individuals and those
with retinitis pigmentosa. The machine learning results of
these studies are compared with our results in Table 3.

As seen in Table 3, Chen et al. [19] classified retinitis pig-
mentosa and healthy individuals using color fundus images
with high accuracy using Xception deep learning network.
Masumoto et al. [20] obtained high success rates by clas-
sifying UWPC and UWAF images of these two groups with
CNN. Similar to these two studies, our study successfully
differentiated healthy individuals from retinitis pigmentosa.
We used a total of four machine learning classifiers (LR,
NB, SVM, SVM, MLP-ANN) and achieved the highest
performance with the NB algorithm. In addition, Tadanza
et al. [21] classified retinitis pigmentosa and healthy sub-
jects using pupillometry parameters with SVM algorithm
and found relatively lower success rates compared to other
studies.

As can be seen, studies in literature have focused on
distinguishing between retinitis pigmentosa and healthy
individuals using machine learning algorithms, but so far,
no specific method for its automatic staging has been pre-
sented. In this study, we not only distinguished individuals
with retinitis pigmentosa from the healthy group but also
performed both binary and multi-class classification to stage
the disease. According to Table 3, NB, the algorithm with
the best results classified the early vs. middle stage, early vs.
advanced stage and middle vs. advanced stage with an accu-
racy of 0.84, 0.98 and 0.79 respectively. On the other hand,
as observed in the same table, the NB classifier achieved an
accuracy of 0.82 in the four-class classification that included
healthy individuals, whereas it yielded an accuracy of 0.75
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Table 3 Comparison of the proposed method with similar studies in literature

References Methods Targets Classifier Results
Chen [19] Color Fundus Image RP/HG Xception 0.96 ACC
0.9571 SEN
0.9851 PREC
Masumoto [20] UWPC, UWAF RP/HG CNN
UWPC: 0.99 SPE,
0.99 SEN
UWAF: 0.99 SPE,
1.0 SEN
ladanza [21] Pupillometry RP/HG SVM 0.846 ACC
0.937 SEN
0.786 SPE
Proposed Method MIfERG Responses Binary Classification NB
HG/ES, HG/MS, HG/AS, ES/MS HGJ/ES: 0,99 ACC
ES/AS, MS/AS HG/MS: 0,99 ACC
HG/AS: 0,99 ACC
ES/MS: 0,84 ACC
ES/AS: 0,98 ACC
MS/AS: 0,79 ACC
NB
Multi-class Classification HG/ES/MS/AS:
HG/ES/MS/AS 0.82 ACC
ES/MS/AS ES/MS/AS:
0.75 ACC

RP: Retinitis Pigmentosa; HG: Healthy Group; ES: Early Stage; MS: Mid Stage; Advanced Stage; ACC: Accuracy; SEN: Sensitivity; PREC:
Precision; CNN: Convolution Neural Networks; SVM: Support Vector Machines; NB: Naive Bayes

in the three-class classification, which involved only the
stages of retinitis pigmentosa. The results show that differ-
ent stages of retinitis pigmentosa disease can be effectively
classified using temporal features of MfERG responses.

In summary, the proposed model demonstrates that indi-
viduals with healthy individuals and retinitis pigmentosa
and stages of it can be effectively diagnosed from the N1,
P1, and N2 amplitude and latency attributes calculated from
5 rings derived from MfERG responses. In addition, the
practical extraction of these features may make this model
applicable to a broader range of patients in clinical settings.

Conclusion and clinical significance

Retinitis pigmentosa is a hereditary disease caused by dam-
age to the cone and rod cells in the retina. This disease is
relatively common in regions like Tiirkiye where consan-
guineous marriages occur. Its early diagnosis and correct
staging are of great importance to slow or prevent the pro-
gression of the disease. Currently, there is no definitive cure
for retinitis pigmentosa disease, but various approaches
such as pharmacologic, gene- and stem-cell therapies are
used to reduce the effects of the disease and delay its pro-
gression. In the [6] study, it has been emphasized that these
treatment approaches may vary across different stages of
retinitis pigmentosa. For example, pharmacologic therapies
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can be applied in the early stage, stem cell therapies in the
middle stage and gene therapies in the advanced stage.
These therapies have the potential to positively affect the
course of the disease. In this context, Oner and Kahraman
[49] investigated the effect of suprachoroidal umbilical
cord-derived mesenchymal stem cell implantation on indi-
viduals with pediatric retinitis pigmentosa. As a result of the
evaluations, significant improvement was observed in VA,
VF and MfERG recordings (P1 amplitudes of ring 1, 2, 3,
4, 5). Ozmert and Arslan [50] reported that VF, OCT, VA
and MfERG (P1 amplitude and latency for ring 1, 2 and 3)
measurements showed significant improvement by apply-
ing wharton gel-derived mesenchymal stem cell therapy for
retinitis pigmentosa patients. On the other hand, a study by
Mangunsong et al. [51] examined the effect of secretome
injection derived from allogeneic umbilical cord mesenchy-
mal stem cells on patients with AS-retinitis pigmentosa. In
this study, the authors observed only a slight change in the
N1 and P1 amplitudes and latencies of ring 1. In another
study, Ozkan et al. [52] investigated the effect of supracho-
roidal implantation of mesenchymal stem cells in patients
with retinitis pigmentosa and found significant improvement
in VF, VA and MfERG (P1 amplitude and latency for ring
1, 3, 4) tests. These studies show that treatment modalities
are effective, which plays an important role in improving
the quality of life of retinitis pigmentosa patients. Therefore,
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it is crucial to accurately diagnose the stages of the disease
and determine treatment strategies.

The main advantage of this study is that not only healthy
and retinitis pigmentosa individuals but also the stages of
this disease can be binary and multi-class classified using
the basic parameters of MfERG responses. Therefore, the
stages of retinitis pigmentosa disease have been proven to
be associated with MfERG. On the other hand, the limita-
tion of the present study is that this disease is hereditary,
and the data are limited to individuals with retinitis pigmen-
tosa from Tiirkiye. In conclusion, for the first time, we have
taken an essential step towards early diagnosis and staging
of retinitis pigmentosa disease by creating a feature vector
with temporal parameters of MfERG responses and suc-
cessfully using machine learning algorithms.
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