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Introduction

Retinitis pigmentosa is a type of inherited retinal disease 
caused by damage to photoreceptor (cone and rod) cells in 
the retina. This disease affects approximately one in 3–4 
thousand people worldwide [1–3]. In Türkiye, it is estimated 
to affect 15,000–20,000 people due to the prevalence of 
consanguineous marriages [4]. This disease has a long-term 
impact on individuals, typically progressing over a period 
of 10 to 30 years. It consists of three stages: early, mid, and 
advanced. Early-stage patients may have decreased night 
vision and narrowing of peripheral vision. In mid-stage 
patients, the decrease in night vision is more pronounced 
than in the early stage, and patients notice a decrease in 
peripheral vision. Finally, advanced-stage patients lose their 
central visual field [5]. Currently, there is no definitive cure 
for the disease, but there are some approaches to delay the 
progression of the disease. These approaches vary at dif-
ferent stages of the disease. In patients with retinitis pig-
mentosa, pharmacologic treatments in early-stage, stem cell 
therapies in mid-stage, and gene therapy in advanced-stage 
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Abstract
Retinitis pigmentosa is an inherited retinal disease caused by damage to photoreceptor cells. Diagnosis and staging of 
this disease are crucial for early intervention and effective treatment planning. In this study, the amplitude and latency 
features of N1, P1, and N2 waves obtained from multifocal electroretinogram responses over five rings were used with 
binary and multiclass classification methods using four different machine learning algorithms to distinguish retinitis pig-
mentosa patients from healthy individuals and to evaluate the stages of the disease. Binary classifications were performed 
for six different groups, and the Naive Bayes (NB) algorithm performed the best on all evaluation metrics, achieving 99% 
accuracy in distinguishing healthy individuals from each disease stage. Furthermore, multiclass classification was applied 
in two different steps. In the first step, the Naive Bayes model achieved 82% accuracy in four-class classification, includ-
ing healthy individuals. Considering the near-perfect separability of healthy individuals, in the second step, a three-class 
classification including only disease stages was performed, and the model achieved 76% accuracy. These results indicate 
that the proposed approach provides objective and accurate staging for retinitis pigmentosa and can serve as a valuable 
decision support system to assist ophthalmologists in clinical practice.
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can help delay disease progression [6–8]. These treatment 
modalities can potentially reduce the effects of retinitis pig-
mentosa and preserve visual function. Therefore, it is crucial 
to accurately identify the stages of the disease to improve 
the quality of life of individuals with retinitis pigmentosa 
and to determine appropriate treatment strategies.

In recent years, imaging and electrophysiologic tech-
niques such as Optical Coherence Tomography Angiog-
raphy (OCTA) [9], Electroretinogram (ERG) [10], Visual 
Field (VF) [11], Visual Acuity (VA) [11], and Multifocal 
Electroretinogram (MfERG) [12] have been widely used 
by ophthalmologists in the evaluation of retinitis pigmen-
tosa. Specifically, the MfERG technique is crucial because 
it allows both the extraction of electrophysiologic informa-
tion and the topographic mapping of different regions of 
the retina. In this way, the effects of the disease on different 
regions of the retina and the monitoring of disease progres-
sion can be analyzed in more detail. The MfERG technique 
usually divides the retina into 61 or 103 hexagonal sectors, 
according to International Society for Clinical Electro-
physiology of Vision (ISCEV) standards. These hexago-
nal regions are rapidly stimulated using a pseudo-random 
black/white sequence (m-sequence), generating individual 
responses for each hexagon. Standard MfERG responses 
(first-order responses) consist of three fundamental waves. 
The first of these waves is the N1 wave, which is an initial 
negative deflection; the second is the P1 wave, which occurs 
after the negative deflection and has a maximum positive 
peak; and finally, the N2 wave, which is the second negative 
wave after P1 [13].

Previous studies have noted external retinal electroreti-
nographic changes in retinitis pigmentosa patients, but in 
all of these studies, the amplitudes and latencies of MfERG 
responses were analyzed by statistical methods, and the 
results differed fundamentally [12, 14–18]. In this study, we 
aimed to distinguish individuals with retinitis pigmentosa 
from healthy individuals and to classify the stages of the 
disease by practically extracting the amplitude and latency 
features of N1, P1, and N2 waves from MfERG responses.

Retinitis pigmentosa is a multiclass disease, and accurate 
staging of this disease is crucial for early intervention that 
can delay or prevent its progression. However, the staging 
of disease is often based on clinical examinations and doc-
tors’ experience. This can lead to misdiagnosis of stages 
and unnecessary waste of time. Therefore, it is becoming 
increasingly important to use an effective decision support 
system to assist ophthalmologists with an accurate and rapid 
diagnosis. These decision support systems can help predict 
its stages by evaluating objective data and using machine 
learning algorithms.

The number of studies using machine learning techniques 
to diagnose and stage retinitis pigmentosa is extremely 

limited in the literature. The scarcity of such studies sug-
gests that its diagnosis and staging are still based on more 
traditional methods in the clinic. However, recent studies 
on retinitis pigmentosa using these techniques have gener-
ally focused on early detection or segmentation. We briefly 
review these studies here. Chen et al. presented pre-trained 
Inception Resnet V2, Xception, and Inception V3 deep 
learning-based transfer learning methods to classify retinitis 
pigmentosa patients and control groups using color fundus 
images. They found that the highest classification accuracy 
among these three transfer learning methods is the Xcep-
tion method, with 96.00% [19]. To detect the presence of 
retinitis pigmentosa, Masumoto et al. used ultra-widefield 
pseud color (UWPC) and ultra-widefield autofluorescence 
(UWAF) images and evaluated the performance of convo-
lutional neural networks. As a result of their experiments, 
they obtained 99.1% and 99.3% specificity and sensitiv-
ity for UWPC images and 99.5% and 100% for UWAF 
images, respectively [20]. Iadanza et al. extracted features 
from pupillometry data to diagnose retinitis pigmentosa dis-
ease in pediatric individuals. They classified these features 
using two support vector machine (SVM) algorithms, one 
for each eye. Subsequently, they combined the two SVM 
algorithms into an ensemble model and achieved an accu-
racy of 84.6% [21]. On the other hand, Yassin et al. inves-
tigated the superimposition of different multimodal images 
using manual alignment and Artificial Intelligence (AI) in 
individuals with retinitis pigmentosa. They used infrared 
images from microperimetry, spectral domain OCT and 
near infrared images from a scanning laser ophthalmoscope. 
As a result of this study, it was determined that AI aligned 
infrared images more successfully than the manual align-
ment method in retinitis pigmentosa patients [22]. Wang et 
al. proposed two deep learning-based models, U-Net and 
sliding window (SW), for automatic segmentation of retinal 
layer thicknesses using B-scans of spectral domain OCT of 
individuals with retinitis pigmentosa. They then combined 
these models to create a hybrid model. They found that 
this hybrid model has superior performance compared to 
U-Net and SW in measuring the retinal layer thickness in 
OCT images of retinitis pigmentosa patients [23]. In another 
study, Arsalan et al. developed RPS-Net, a deep learning-
based semantic segmentation network specifically designed 
to detect retinal pigment markers automatically and retinitis 
pigmentosa detection using fundus images. They reported 
that this deep learning network provides superior segmen-
tation performance compared to traditional deep learning 
models [24]. As seen in these papers, previous studies have 
focused on detecting the presence of retinitis pigmentosa 
disease using machine learning and accurately classifying 
the associated structures. However, there are no studies on 
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its staging using MfERG techniques and machine learning 
algorithms.

In addition, two studies in the literature performed retini-
tis pigmentosa staging based on manual methods. When we 
look at these studies, a study conducted by Iftikhar and col-
leagues aimed to classify the severity of retinitis pigmentosa 
disease. In this study, VF width, VA, and spectral domain 
OCT ellipsoid zone parameters were used. These param-
eters were scored on a scale of 0–5 based on the distribution 
of the disease, creating a scoring criterion. A cumulative 
criterion (0–15) was obtained to grade individuals with reti-
nitis pigmentosa from zero to five. As a result of the study, 
individuals with retinitis pigmentosa were divided into five 
groups based on cumulative criteria, and the scores asso-
ciated with the methods were found to be statistically sig-
nificant when compared to each other [25]. In another study, 
Öner et al. classified the severity of the disease similarly 
to the method applied by Iftikhar et al. by adding MfERG 
responses P1 amplitudes to VA, VF (diameter), and OCT 
(ellipsoid zone width) tests. As a result, in this study, it has 
been stated that the stages of retinitis pigmentosa are signifi-
cantly associated with scores related to the parameters of the 
tests. As understood from the above-mentioned studies, its 
staging has been performed manually, employing multiple 
techniques in this process [26]. In this study, by combining 
the amplitudes and latencies of the N1, P1 and N2 waves 
of MfERG responses, we used machine learning classifiers 
to both automatically distinguish individuals with retinitis 
pigmentosa from healthy and automatically classify it into 
its stages.

However, various machine learning classifiers have been 
used many times in the literature to stage diseases such as 
Alzheimer’s [27], Parkinson’s [28], Diabetic Retinopathy 
[29], and Obesity [30]. It has been reported that these clas-
sifiers have achieved successful results in staging these dis-
eases. Among these, the most used classifiers are Support 
Vector Machines (SVM) and Multilayer Perceptron Arti-
ficial Neural Network (MLP-ANN). In the current study, 
in addition to these classifiers, Logistic Regression (LR) 
and Naive Bayes (NB) classifiers, which give successful 
results in binary classification, were applied and compared 
(Figs. 10–15).

The main objective of this study was to help ophthal-
mologists develop an effective method that automatically 
diagnoses individuals with retinitis pigmentosa disease and 
classifies them into disease stages. To achieve this goal, 
amplitude and latency features were extracted from MfERG 
responses. Then, these features were used as feature vectors 
in SVM, NB, LR and MLP-ANN algorithms for binary and 
multiclass detection of retinitis pigmentosa.

Materials and methods

The approach proposed in this study consists of four main 
stages: MfERG data collection, ring structure generation, 
feature extraction, and classification. A comprehensive 
illustration of this configuration is shown in Fig. 1, and the 
subsequent subsections go into great depth on the steps.

Description of the data

All study procedures were conducted in accordance with 
the Declaration of Helsinki and approved by the Acıbadem 
Mehmet Ali Aydınlar University Medical Research Evalua-
tion Board (ATADEK-2023-16/553). The data used for this 
study were obtained retrospectively from the Department of 
Ophthalmology, Acıbadem Kayseri Hospital, and the diag-
nosis of retinitis pigmentosa was confirmed using ocular 
history, fundus photographs, VF, OCT, and International 
Society for Clinical Electrophysiology of Vision (ISCEV) 
[13] standardized MfERG and ERG tests. The study included 
98 eyes of 77 patients with retinitis pigmentosa and 34 eyes 
of 19 healthy individuals. In line with the inclusion criteria, 
individuals with typical findings on fundus examination, 
consistent loss on the Humphrey 30 − 2 visual field test, 
and the diagnosis of the disease supported by the MfERG 
test were recruited; however, individuals with additional 
eye defects such as uveitis, cataract, and glaucoma were 
excluded. Due to the use of retrospective data in the study, 
previous staging results with VA, VF, OCT, and MfERG 
modalities were reviewed by an expert ophthalmologist, and 
patients were divided into three groups: early stage (33 eyes 
of 19 individuals), mid stage (31 eyes of 27 individuals), 
and advanced stage (34 eyes of 32 individuals). To prevent 

Fig. 1  Block diagram of the proposed work (Healthy Group-HG; Early Stage-ES; Mid Stage-MS; Advanced Stage-AS)
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The stimulus frequency was fixed at 17 Hz [31–33], and the 
frame rate of the system is set to 75 Hz in accordance with 
ISCEV standards [13, 34]. The sampling rate was 960 Hz, 
and each MfERG response length was 96 samples per 100 
ms. To ensure signal reliability, at least 5000 responses were 
recorded from each eye of the participants, with noise levels 
carefully maintained below 5 kiloohms.

Generation of rings and feature extraction

In this study, the first-order MfERG kernel was used. 
According to ISCEV standards, 61 hexagon sectors were 
grouped into five rings from the center to the periphery as 
Ring1 (R1-1 hexagon), Ring2 (R2-6 hexagon), Ring3 (R3-
12 hexagon), Ring4 (R4-18 hexagon), and Ring5 (R5-24 
hexagon). The position of these rings was shown on Fig. 2. 
Their average responses were obtained (Fig. 3). The ampli-
tudes and latencies of the N1, P1 and N2 waves of each ring 
were determined using the findpeaks function developed 
by Matlab (R2023a-trial version). The N1 wave, usually 
a negative peak, was calculated by finding the minimum 

possible bias in the evaluation process, a blind evaluation 
was performed by a physician and the physician performed 
an objective evaluation without knowing which group the 
signals belonged to. With this method, bias in the clinical 
evaluation process was minimized, and a more reliable clas-
sification was achieved. Table 1 presents the demographic 
and clinical characteristics of the individuals who partici-
pated in the study.

Acquisition of MfERG recordings

MfERG recordings were obtained using the Metrovision 
MonPackOne system (France) according to ISCEV [13] 
procedures. Subjects were kept in the test room to adjust 
to the light and then their pupils were dilated. After topical 
anesthesia, a contact lens electrode was placed on the numb 
pupils for recording. The screen of the MonPackOne stimu-
lus system was positioned 33 cm from the subject. The stim-
ulator is composed of 61 hexagon sectors. The luminance 
of each hexagonal sector was independently set to 100 cd/
m2 for white hexagons and 1  cd/m2 for black hexagons. 

Table 1  Demographic characteristics of healthy group and retinitis pigmentosa patients
Subjects Total Subjects (Number of eyes) Male/Female Age (Mean±SD)
HG 19 (34) 13/6 35.5 ± 13.8
ES 19 (33) 8/11 39.8 ± 20.3
MS 27 (31) 17/10 35.9 ± 14.8
AS 32 (34) 23/9 38.6 ± 15.9
Healthy Group-HG; Early Stage-ES; Mid Stage-MS; Advanced Stage-AS

Fig. 2  61 hexagonal sectors 
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Figure 4 presents an example of the parameters N1, P1, 
and N2 of the rings. Table  2 shows the N1, P1, and N2 
amplitude and latency values of the MfERG responses of 
some subjects.

Classification algorithms

After extracting the features from the MfERG responses 
with the method mentioned above, SVM, NB, LR and 

value within the temporal window between 9 and 32 ms. 
The P1 wave is followed by a positive peak and is obtained 
by determining the maximum value in the range of 32–50 
ms. The N2 wave is the second negative peak after P1 and 
was calculated by finding the minimum value in the range 
of 50–70 ms. In total, 30 features of 15 amplitudes and 15 
latencies were extracted. These features were used for the 
feature vector of the classification algorithms [34, 35].

Fig. 4  N1, P1, and N2 features 
extracted from each ring
 

Fig. 3  Rings (R1, R2, R3, R4, 
and R5) obtained by averag-
ing from each region (MfERG 
response)
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wt.xj + b = 0.� (1)

Where j is the number of instances (N) in the dataset, xj  is 
the features in the hyperplane, w is the weight vector, and 
b is the bias value of the hyperplane. The hyperplane if the 
dataset consists of a linearly separable structure with class 
labels y ∈ {1, −1}:

wt.xj + b ≥ 1, y = 1� (2)

wt.xj + b ≤ −1, y = −1.� (3)

is expressed as. Combining the entire dataset, i.e., Eq. (2) 
and Eq. (3), results in Eq. (4)

yj

(
wt.xj + b

)
≥ 1 j = 1,2, 3,4, . . . .n .� (4)

The optimal hyperplane is between the support vector 
points and parallel lines, as shown in Fig.  5. The margin 
of this hyperplane is expressed as 2/∥ w2‖. Then, using 
the Lagrange coefficients ( λ ), the optimal hyperplane, and 
Eq. (4), the decision rule in Eq. (5) is obtained.

y = f (x) = sign(
∑

j
λjyj⟨x.xj⟩ + b).� (5)

MLP-ANN classifiers were used to evaluate the binary and 
multiclass results. The algorithms used are briefly described 
below.

Support vector machines (SVM)

SVM is an machine learning algorithm developed by Vap-
nik and Cortes [36] that is particularly effective for binary 
classification problems. This algorithm is mainly used to 
discriminate data points belonging to two classes by an 
optimal hyperplane. To find this optimal hyperplane, SVM 
applies the maximum margin principle. Margin refers to the 
distance between the support vectors, and the maximum 
margin is achieved when creating the best separation plane 
between two classes.

Different kernel functions are used depending on whether 
the features are linear. The Linear kernel function is pre-
ferred if the features can be linearly decomposed. However, 
if the features cannot be linearly decomposed, methods such 
as Polynomial, Gaussian, and Sigmoid kernel functions are 
used. These different kernel functions increase the flexibil-
ity of SVM, allowing better results for various data struc-
tures and classification problems. Figure 3 shows a linear 
kernel function’s support vectors and optimal hyperplane. A 
linear hyperplane is expressed as in Eq. (1).

Fig. 5  Support vectors and 
optimal hyperplane of the linear 
kernel function
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If h_θ (x) ≥ 0.5, the output value of y is 1 .� (10)

Multilayer perceptron artificial neural network (MLP-ANN)

Artificial Neural Networks (ANN) is a machine learning 
model developed by mimicking the working principle of 
neurons in the human brain. This model is a powerful tool to 
solve complex problems in datasets efficiently and quickly. 
MLP-ANN [39] is a supervised neural network algorithm 
for classifying nonlinear models. The architecture of this 
algorithm consists of an interconnected input layer, hidden 
layer, and output layer, as shown in Fig. 6. Feedforward and 
feedback propagation are applied between these layers to 
perform the learning process in which weights and biases 
are automatically updated.

The formulas in Eq.  (11) usually represent classifica-
tion with the MLP-ANN algorithm. Where θ  represents 
the weights, x = {x1, x2, x3, ... xM} the feature vector, 
y the target vector, b the bias term, and σ  the activation 
function.

y = f (x) = σ (
∑

M
i=1xi.θ i + b).� (11)

Training procedure and performance metrics for 
classifiers

The performance of SVM, NB, LR, and ANN classifiers 
was evaluated using the k-cross validation method due to 
the limited dataset and to avoid overfitting. This method 
divides the dataset into k subsets during training and uses 
each subset as the training and test set. The model’s perfor-
mance is evaluated for a different subset at each iteration. 
At the end of this process, k-test results are generated, and 
the average value of the results gives information about the 
model’s performance. In this study, the 10-fold cross-vali-
dation method was repeated 20 times to evaluate the perfor-
mance of the classifiers more reliably (Fig. 7). Accordingly, 
for each fold, the dataset was split into training and test sets 
in a 9:1 ratio. Repeating the entire cross-validation process 
20 times helped to minimize performance variability due 
to random data partitioning and ensured more stable and 
statistically reliable evaluation metrics. The performance 
metrics, including sensitivity, precision, accuracy, F1 score, 
specificity, and receiver operating characteristic area under 
the curve (ROC-AUC) score, obtained in each iteration, 
were averaged to minimize the effect of random variation in 
the training and test sets.

In this proposed work, to classify the dataset more 
efficiently and solve complex problems in this set more 
straightforwardly, the linear kernel function is used in the 
SVM algorithm, and the regularization parameter C is set to 

Naive Bayes (NB)

NB, based on Bayes’ theorem, is a simple machine learning 
algorithm used to solve classification problems. As a basic 
principle, the NB algorithm performs probabilistic classifi-
cation by treating the features in the dataset independently. 
That is, it works under the assumption that each feature 
is evaluated independently of the other features in class 
determination. In this way, the probabilities of the features 
belonging to the classes are calculated, the class with the 
highest probability is assigned to the data point, and clas-
sification is performed [37]. The mathematical calculation 
of the NB algorithm is given in Eq. (6):

P (K/L) = P (L/K)P (K)
P (L)

.� (6)

Where P (K) is the probability of K; P (L) is the prob-
ability of L; P (K/L) is the probability of K based on L; 
P (L/K) is the probability of L based on K.

Logistic regression (LR)

LR [38] is an algorithm that establishes a polynomial equa-
tion between multiple independent variables and a depen-
dent variable and is used to classify data. This algorithm 
uses a sigmoid function, shown in Eq. (7), which estimates 
the probability values of the dependent variable between 0 
and 1.

hθ (x) = 1
1 + e−(θ 0+θ 1.x1) .� (7)

In this equation, θ  represents the weights, and x repre-
sents the number of features in the dataset. A cost function 
is usually used when the LR algorithm learns the weights 
according to the dataset. The cost function is a function 
that evaluates the accuracy of the learned weights and mea-
sures the performance of the algorithm. The LR algorithm 
minimizes the cost function to obtain the best weights. This 
function is expressed in Eq. (8).

J (θ ) = 1
m

[∑
m
i=1(−yi.log

(
pθ

(
xi

))
−

(
1 − yi

)
.log(1 − pθ

(
xi

)
)
]

.� (8)

Where m represents the amount of data in the dataset, and 
y represents the actual class labels. The LR model train-
ing is completed once the cost function reaches the optimal 
value. Then, the probability values, the model outputs, are 
compared with the threshold values to predict the classes 
according to Eq. (9) and Eq. (10).

If h_θ (x) < 0.5 ; y output value 0� (9)
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for machine learning, which is the harmonic means of preci-
sion and accuracy. Specificity is a performance metric that 
measures the model’s ability to correctly identify negative 
samples by measuring the ratio of true negatives among all 
true negative samples. The ROC-AUC score is a metric that 
measures the classifier’s ability to distinguish between dif-
ferent classes by evaluating the relationship between the 
true positive rate and the false positive rate. The mathemati-
cal equations for precision, recall, accuracy, F1_score, and 
specificity are shown below:

Precision = TP

TP + FP
� (12)

Recall = TP

TP + FN
� (13)

1. For NB, class distributions were calculated using equal 
prior probabilities according to the number of samples of 
classes in the dataset. Different iteration numbers (100, 500, 
1000, and 1500) were tried for the LR algorithm, and 1000 
iterations were used to compare the best classification result 
with other algorithms. For MLP, two hidden layers with 10 
nodes each were used, and the learning rate was set to 0.001.

The metrics used in this study to evaluate the performance 
of classification algorithms are precision, recall, accuracy, 
F1_score, specificity, and ROC-AUC score. Precision is a 
metric that expresses the ratio of correct and positive predic-
tions to total positive predictions among the instances in the 
dataset. Recall is calculated as the ratio of correct and posi-
tive predicted instances to all true instances. Accuracy is the 
ratio of correctly predicted samples to the total amount of 
data in the dataset. The F1_score is a performance criterion 

Fig. 6  An example of ANN 
Structure
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Comparison of MfERG responses of subjects

In this proposed study, five rings (R1, R2, R3, R4, R5) are 
created using the MFERG responses and the commonly used 
amplitude and latency features N1, P1 and N2 are extracted 
for each ring. Since each ring has three amplitude and three 
delay features, a total of 15 amplitude and 15 latency fea-
tures were extracted. These amplitude and latency features 
were visualized and compared for the healthy, early, mid 
and advanced groups using the box plots in Figs. 8 and 9. 
Accordingly, healthy individuals had higher N1, P1 and N2 
wave amplitudes and shorter N1, P1 and N2 wave laten-
cies than retinitis pigmentosa patients. Moreover, advanced 
stage showed relatively lower amplitude and higher latency 
in all rings compared to early and mid-stage. These results 
suggest that the amplitude and latency characteristics of 
N1, P1 and N2 waves are the most discriminative features 
for classifying healthy individuals and retinitis pigmentosa 
stages.

Binary classification results

Since all extracted features demonstrated distinctive charac-
teristics, they were subsequently selected as inputs for LR, 
NB, SVM, and MLP-ANN classifiers. The performance of 
these classifiers was evaluated using accuracy, precision, 
sensitivity, F1_score, specificity, and roc-auc score met-
rics. Figures 10-15 demonstrated the performance metrics 
results for six classification types, namely: healthy group 
vs. early stage, healthy group vs. mid-stage, healthy group 
vs. advanced stage, early stage vs. mid-stage, early stage 
vs. advanced stage, and mid-stage vs. advanced stage. Com-
pared to other classifiers, the NB algorithm achieved the 

Accuracy = TP + FN

TP + TN + FP + FN
� (14)

F1_Score = 2 × (Sensitivity × Precision

Sensitivity + Precision
)� (15)

Specificity = TN

TN + FP
.� (16)

Here, TP represents true positive samples, FP represents 
false positive samples, TN represents true negative samples, 
and FN represents false negative samples.

Experimental results

In this section, we present a comparison of the amplitude 
and latency parameters obtained from MfERG responses 
of healthy and retinitis pigmentosa subjects. We also report 
results for binary and multiclass classification of retinitis 
pigmentosa using machine learning models including LR, 
NB, SVM, and MLP-ANN. Our approach is the first study 
to evaluate MfERG amplitude and latency parameters and 
use them for automatic staging of this disease.

However, to implement the experimental framework, 
different software tools were used at various steps of the 
work. In this regard, the feature extraction and visualization 
steps in the study were performed using MATLAB. In addi-
tion, the results of classification processes and performance 
metrics were obtained using the Scikit-learn library in the 
Python programming language.

Fig. 7  The diagram of k-fold cross-validation with k = 10
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mid-stage and advanced stage, and a three-class classifica-
tion including only retinitis pigmentosa stages (early, mid 
and advanced).

Figure 16 presents the results of the LR, NB, SVM, and 
MLP-ANN models for the four-class staging task, includ-
ing the healthy group, early stage, mid-stage, and advanced 
stage categories. According to the graph, the NB model out-
performed the other classifiers in all metrics, achieving the 
highest overall performance with an accuracy of 0.8232, 
precision of 0.8563, recall of 0.8232, F1-score of 0.8393, 
specificity of 0.9214, and roc-auc score of 0.956. On the 
other hand, Fig. 17 displays the classification results for the 
three-class staging task focusing only on retinitis pigmen-
tosa stages (early, mid, and advanced stages), excluding the 
healthy group. This exclusion is based on the high separabil-
ity of healthy individuals observed in binary classification 
tasks. In this classification step, NB achieved the highest 
scores in all evaluation metrics with an accuracy of 0.7568, 
precision of 0.7954, recall of 0.7568, F1 score of 0.7754, 
specificity of 0.788, and roc-auc score of 0.9083.

highest accuracy rates of  0.99, 0.99, 0.99, 0.8441, 0.9811, 
and 0.7901 for the six classification types, respectively. This 
algorithm also gave the highest results in terms of preci-
sion, sensitivity, F1-score, specificity, and roc-auc score 
among all classification types. The results revealed that the 
proposed features and classification algorithms, especially 
NB and SVM, were effective in accurately discriminat-
ing healthy individuals from retinitis pigmentosa stages in 
binary classification tasks. Furthermore, within the retinitis 
pigmentosa group, classification between early and mid-
stages and between early and advanced stages achieved 
higher results compared to other mid- and advanced-stage 
classifications.

Multi-class classification results

In this study, in addition to binary classification tasks, 
multi-class classification tasks were performed to evaluate 
the effectiveness of the proposed features in discriminat-
ing between healthy individuals and retinitis pigmentosa 
stages. Two classification steps were designed: a four-class 
classification including the healthy group, early stage, 

Fig. 8  Comparison of 15 amplitude features for healthy group (HG), early stage (ES), mid-stage (MS), and advanced stage (AS)
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Fig. 10  Healthy group vs. early-stage classification results

 

Fig. 9  Comparison of 15 latency features for healthy group (HG), early stage (ES), mid-stage (MS), and advanced stage (AS)
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Fig. 12  Healthy group vs. advanced stage classification results

 

Fig. 11  Healthy group vs. mid-stage classification results
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Fig. 14  Early vs. advanced stage classification results

 

Fig. 13  Early vs. mid-stage classification results
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Fig. 16  Four-class classification results

 

Fig. 15  Mid vs. advanced stage classification results
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Lopez-Dorado et al. extracted features by applying Empiri-
cal Model Transform (EMT) and Continuous Wavelet Trans-
form (CWT) to MfERG responses and used these features to 
classify controls and MS [42]. The above studies show that 
the attributes of MfERG responses have significant poten-
tial. In light of these, we have developed a machine learning 
model for early diagnosis and staging of retinitis pigmen-
tosa disease using temporal features extracted from MfERG 
responses for the first time. Our results show that the model 
is successful in classifying this disease and can help in stag-
ing the disease.

The aim of this study is to present an efficient method 
to classify individuals with retinitis pigmentosa into both 
binary and multiclass stages using time features (ampli-
tudes and latencies) of MfERG responses in combination 
with machine learning algorithms. However, several studies 
have examined various parameters of MfERG responses to 
assess outer retinal function in healthy subjects with retinitis 
pigmentosa. When these studies were reviewed, Han et al. 
found that only the mean amplitudes and latencies of N1, 
P1, and N2 waves of the R1 and R2 rings were decreased 
in retinitis pigmentosa compared to healthy individuals 
[14]. On the other hand, Giambene et al. used the ampli-
tude and latency parameters of the mean P1 wave from 
MfERG responses to compare generalized retinitis pigmen-
tosa, sector retinitis pigmentosa, and healthy individuals. 

Discussion

Electrophysiological tests, used to provide an objective 
assessment of the visual system, are fundamental elements 
of clinical practice. These tests provide important informa-
tion for the diagnosis and monitoring of diseases by measur-
ing electrical activities in different parts of the eye. Previous 
research has shown that the time and frequency domain fea-
tures of MfERG responses, one of these electrophysiological 
tests, can be used to assess various diseases. For example, in 
the study by Boquete et al., a method based on neural net-
works was proposed to determine glaucoma by extracting 
13 morphological features from the time domain of MfERG 
responses. It has been stated that the use of these features 
has provided effective results in successfully distinguish-
ing individuals with glaucoma from the control group [40]. 
Brandao et al., on the other hand, analyzed the responses of 
two flash MfERG using discrete wavelet transformation to 
distinguish glaucoma from healthy controls, and the results 
were reported to be statistically significant [41]. Boquete et 
al., investigated the ability of MfERG responses to diagnose 
early-stage multiple sclerosis (MS). For this, they analyzed 
the amplitudes and latencies of MfERG and generated a 
signal from control individuals. As a result, they stated that 
the parameters of MfERG are significant in distinguishing 
between MS and healthy controls [35]. In another study, 

Fig. 17  Three-class classification results

 

1 3



Physical and Engineering Sciences in Medicine

multimodal imaging techniques in individuals with retinitis 
pigmentosa, was successful compared to the manual align-
ment technique. In [23]’s study, the thickness of retinal 
layers in OCT images was automatically segmented using 
a deep learning architecture. In addition, in [24, 45], and 
[46], deep learning based detection of pigment markers in 
fundus images for the analysis of retinitis pigmentosa was 
performed and high performance was achieved for the its 
diagnosis. In two other studies, visual function in individu-
als with retinitis pigmentosa was successfully predicted 
using deep learning architectures [47, 48]. These studies 
show that imaging techniques and machine learning algo-
rithms have significant potential for the analysis of retini-
tis pigmentosa. However, remarkably, these studies did not 
focus on tests that objectively assess the retina and provide 
functional measurements. Thus, in the current study, we 
used MfERG responses to determine the stage of retinitis 
pigmentosa, which provides a more detailed examination of 
retinal function.

As a result of the literature review, three studies were 
identified that applied machine learning algorithms to auto-
matically distinguish between healthy individuals and those 
with retinitis pigmentosa. The machine learning results of 
these studies are compared with our results in Table 3.

As seen in Table 3, Chen et al. [19] classified retinitis pig-
mentosa and healthy individuals using color fundus images 
with high accuracy using Xception deep learning network. 
Masumoto et al. [20] obtained high success rates by clas-
sifying UWPC and UWAF images of these two groups with 
CNN. Similar to these two studies, our study successfully 
differentiated healthy individuals from retinitis pigmentosa. 
We used a total of four machine learning classifiers (LR, 
NB, SVM, SVM, MLP-ANN) and achieved the highest 
performance with the NB algorithm. In addition, Iadanza 
et al. [21] classified retinitis pigmentosa and healthy sub-
jects using pupillometry parameters with SVM algorithm 
and found relatively lower success rates compared to other 
studies.

As can be seen, studies in literature have focused on 
distinguishing between retinitis pigmentosa and healthy 
individuals using machine learning algorithms, but so far, 
no specific method for its automatic staging has been pre-
sented. In this study, we not only distinguished individuals 
with retinitis pigmentosa from the healthy group but also 
performed both binary and multi-class classification to stage 
the disease. According to Table 3, NB, the algorithm with 
the best results classified the early vs. middle stage, early vs. 
advanced stage and middle vs. advanced stage with an accu-
racy of 0.84, 0.98 and 0.79 respectively. On the other hand, 
as observed in the same table, the NB classifier achieved an 
accuracy of 0.82 in the four-class classification that included 
healthy individuals, whereas it yielded an accuracy of 0.75 

They reported that the amplitude of the mean P1 wave was 
reduced and the latency was delayed in generalized retini-
tis pigmentosa compared to sector retinitis pigmentosa and 
healthy individuals [12]. As seen in these studies, retinitis 
pigmentosa and healthy individuals can be differentiated by 
different parameters of MfERG responses. In this article, we 
analyzed MfERG responses in the time domain to evaluate 
healthy subjects and retinitis pigmentosa stages. In accor-
dance with ISCEV standards [13], we extracted all features 
of MfERG responses (amplitudes and latencies of N1, P1 
and N2 waves of R1, R2, R3, R4 and R5). We observed 
a significant decrease in the amplitudes and a significant 
increase in the latencies of N1, P1, and N2 waves of all rings 
in the stages of retinitis pigmentosa compared to healthy 
groups (Figs. 8 and 9). These results are consistent with pre-
vious studies and confirm that retinitis pigmentosa reduces 
the field of view.

However, a previous study reported that MfERG is use-
ful in advanced stages of retinitis pigmentosa disease [43]. 
In addition, Moon et al. divided patients with this disease 
into three different groups according to OCT images and 
measured the mean amplitude and latency parameters of 
N1 and P1 in rings 1 and 2. In this study, they found that 
these parameters were significantly different between the 
three groups [44]. In this study, we analyzed the ampli-
tudes and latencies of N1, P1, and N2 waves in all rings 
between the stages of retinitis pigmentosa. Among these 
stages, Advanced stages showed relatively lower amplitude 
and higher latency in all rings compared to early and mid-
stages. We can consider our results as close to the findings 
in the literature. In conclusion, in this study, all amplitude 
and latency features of the N1, P1, and N2 waves of the 
rings (30 features in total) were included in the investiga-
tion due to their high discriminative ability in distinguishing 
both individuals with healthy groups and retinitis pigmen-
tosa and the stages of this disease.

When the studies on retinitis pigmentosa staging in the 
literature so far were examined, it was observed that various 
structural and functional techniques were used for staging 
in the studies of Iftikhar et al. [25] and Oner et al. [26]. 
Especially, as emphasized in the studies of Öner and Kahra-
man, MfERG parameters gave successful results in its stag-
ing. However, this approach is time consuming because it is 
manual and involves multiple techniques. In this study, we 
present a feasible approach for early diagnosis and its stag-
ing by analyzing the rings generated from MfERG responses 
and using them with machine learning algorithms.

In recent years, studies based on machine learning algo-
rithms focusing on different imaging methods in patients 
with retinitis pigmentosa have gained attention in the litera-
ture. For example, in the study by [22], it has been reported 
that an automatic alignment technique based on AI, utilizing 
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can be applied in the early stage, stem cell therapies in the 
middle stage and gene therapies in the advanced stage. 
These therapies have the potential to positively affect the 
course of the disease. In this context, Oner and Kahraman 
[49] investigated the effect of suprachoroidal umbilical 
cord-derived mesenchymal stem cell implantation on indi-
viduals with pediatric retinitis pigmentosa. As a result of the 
evaluations, significant improvement was observed in VA, 
VF and MfERG recordings (P1 amplitudes of ring 1, 2, 3, 
4, 5). Özmert and Arslan [50] reported that VF, OCT, VA 
and MfERG (P1 amplitude and latency for ring 1, 2 and 3) 
measurements showed significant improvement by apply-
ing wharton gel-derived mesenchymal stem cell therapy for 
retinitis pigmentosa patients. On the other hand, a study by 
Mangunsong et al. [51] examined the effect of secretome 
injection derived from allogeneic umbilical cord mesenchy-
mal stem cells on patients with AS-retinitis pigmentosa. In 
this study, the authors observed only a slight change in the 
N1 and P1 amplitudes and latencies of ring 1. In another 
study, Özkan et al. [52] investigated the effect of supracho-
roidal implantation of mesenchymal stem cells in patients 
with retinitis pigmentosa and found significant improvement 
in VF, VA and MfERG (P1 amplitude and latency for ring 
1, 3, 4) tests. These studies show that treatment modalities 
are effective, which plays an important role in improving 
the quality of life of retinitis pigmentosa patients. Therefore, 

in the three-class classification, which involved only the 
stages of retinitis pigmentosa. The results show that differ-
ent stages of retinitis pigmentosa disease can be effectively 
classified using temporal features of MfERG responses.

In summary, the proposed model demonstrates that indi-
viduals with healthy individuals and retinitis pigmentosa 
and stages of it can be effectively diagnosed from the N1, 
P1, and N2 amplitude and latency attributes calculated from 
5 rings derived from MfERG responses. In addition, the 
practical extraction of these features may make this model 
applicable to a broader range of patients in clinical settings.

Conclusion and clinical significance

Retinitis pigmentosa is a hereditary disease caused by dam-
age to the cone and rod cells in the retina. This disease is 
relatively common in regions like Türkiye where consan-
guineous marriages occur. Its early diagnosis and correct 
staging are of great importance to slow or prevent the pro-
gression of the disease. Currently, there is no definitive cure 
for retinitis pigmentosa disease, but various approaches 
such as pharmacologic, gene- and stem-cell therapies are 
used to reduce the effects of the disease and delay its pro-
gression. In the [6] study, it has been emphasized that these 
treatment approaches may vary across different stages of 
retinitis pigmentosa. For example, pharmacologic therapies 

Table 3  Comparison of the proposed method with similar studies in literature
References Methods Targets Classifier Results
Chen [19] Color Fundus Image RP/HG Xception 0.96 ACC

0.9571 SEN
0.9851 PREC

Masumoto [20] UWPC, UWAF RP/HG CNN
UWPC: 0.99 SPE,
0.99 SEN
UWAF: 0.99 SPE,
1.0 SEN

Iadanza [21] Pupillometry RP/HG SVM 0.846 ACC
0.937 SEN
0.786 SPE

Proposed Method MfERG Responses Binary Classification NB
HG/ES, HG/MS, HG/AS, ES/MS HG/ES: 0,99 ACC
ES/AS, MS/AS HG/MS: 0,99 ACC

HG/AS: 0,99 ACC
ES/MS: 0,84 ACC
ES/AS: 0,98 ACC
MS/AS: 0,79 ACC

NB
Multi-class Classification HG/ES/MS/AS:
HG/ES/MS/AS 0.82 ACC
ES/MS/AS ES/MS/AS:

0.75 ACC
RP: Retinitis Pigmentosa; HG: Healthy Group; ES: Early Stage; MS: Mid Stage; Advanced Stage; ACC: Accuracy; SEN: Sensitivity; PREC: 
Precision; CNN: Convolution Neural Networks; SVM: Support Vector Machines; NB: Naïve Bayes
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it is crucial to accurately diagnose the stages of the disease 
and determine treatment strategies.

The main advantage of this study is that not only healthy 
and retinitis pigmentosa individuals but also the stages of 
this disease can be binary and multi-class classified using 
the basic parameters of MfERG responses. Therefore, the 
stages of retinitis pigmentosa disease have been proven to 
be associated with MfERG. On the other hand, the limita-
tion of the present study is that this disease is hereditary, 
and the data are limited to individuals with retinitis pigmen-
tosa from Türkiye. In conclusion, for the first time, we have 
taken an essential step towards early diagnosis and staging 
of retinitis pigmentosa disease by creating a feature vector 
with temporal parameters of MfERG responses and suc-
cessfully using machine learning algorithms.
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