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Abstract: Retinitis Pigmentosa (RP) is a progressive retinal disorder that leads to vision
loss and blindness. Accurate staging of RP is crucial for effective treatment planning and
disease management. This study aims to develop an objective and reliable method for RP
staging by integrating handcrafted features extracted from visual field (VF) grayscale and
multifocal electroretinography (mfERG) P1 wave amplitude maps using machine-learning
models. Four machine-learning models were evaluated using features derived from VF
grayscale maps (GLCM and gray tone features) and mfERG P1 amplitude maps (RGB and
HSV features). Additionally, feature selection was performed using the Random Forest (RF)
algorithm to identify the most relevant features. The experimental results showed that the
Support Vector Machine (SVM) model achieved the highest classification performance with
98.39% accuracy, 98.26% precision, 98.55% recall, 98.41% F1 score, and 99.17% specificity
using the seven most important features: RGB Entropy_R, GLCM Contrast_90°, RGB Std_R,
GLCM Homogeneity_90°, RGB Energy_R, Histogram Kurtosis, and GLCM Energy_90°.
These findings demonstrate that fusing grayscale and amplitude maps provides an effective
approach for RP staging. The proposed method may serve as an objective, automated
decision-support tool for ophthalmologists, enhancing clinical evaluations and enabling
personalized treatment strategies for RP patients.

Keywords: Retinitis Pigmentosa; visual field grayscale maps; multifocal electroretinography
maps; feature fusion; machine learning

1. Introduction

The retina’s complex structure and strong metabolic activity make it a fundamental
part of the visual process. It is a thin and sensitive structure that is made up of pigment
epithelium, photoreceptor cells (cones and rods), ganglion cell layer, nerve fiber layer, and
various support cells. Within them, the photoreceptor cells detect light beams and convert
the information into electrical signals that are transmitted to the brain [1,2]. However,
impairment in photoreceptor cell activity can result in severe vision loss and dramatically
impact an individual’s quality of life.

Retinitis Pigmentosa (RP) is a progressive retinal disease characterized by degeneration
of the photoreceptor cells. An estimated 1/3000 to 1/4000 people worldwide are thought
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to suffer from RP, making it one of the most common inherited disorders. The symptoms
of RP, which often first appear in childhood or adolescence, include peripheral visual field
constriction and decreased night vision. As the disorder progresses, the field of vision
becomes progressively narrower, resulting in a condition called tunnel vision, which can
eventually lead to total blindness [3,4].

It is extremely difficult to provide safe and efficient treatment for RP because of
the genetic variety of the condition, the many biological roles of the altered proteins,
and the numerous molecular variables that cause illness symptoms. For this reason,
therapy strategies are often specialized according to the stage of the disease [5]. In this
context, early-stage treatment could include pharmacological supplements such as vitamin
A, brimonidine, docosahexaenoic acid, and lutein; intermediate-stage treatments could
include stem cell therapy; and later, advanced-stage treatment may include more invasive
procedures such as retinal prostheses, cell transplantation, and gene therapy [5-7]. Each of
these treatment strategies has the potential to slow the progression of RP, preserve vision,
and improve patients” quality of life. Therefore, it is crucial to correctly identify the stages
of RP so that the optimal treatments can be applied to individuals and the effects of the
disease can be minimized.

The staging of RP is fundamental to understanding how the disease progresses and
to determining optimal treatment strategies. In this context, Iftikhar et al. [8] proposed a
scoring system including the parameters of visual acuity (VA), visual field (VF) width, and
ellipsoid zone width on optical coherence tomography (OCT) to classify the severity of RP
disease in a simple and effective way. Similarly, Oner and Kahraman [9] added multifocal
electroretinography (mfERG) parameters in addition to these parameters to evaluate the
severity of RP comprehensively. Such research enables a more precise identification of
the stages of RP, contributing to the determination of the optimal treatment strategies for
the patient and thereby more effective management of the care process. However, these
approaches are often carried out manually, relying on the knowledge and experience of
specialists, which can lead to subjectivity and wasting of time in the process. Therefore, it
is necessary to develop a modern system that is superior to traditional methods to quickly
and accurately identify the stages of RP.

VF is a test used to determine both peripheral and central visual losses by evaluating
the total visual capacity of the individual. The grayscale maps obtained from this test
visualize the losses in the patient’s visual field in gray tones, revealing the effects of RP on
peripheral and central vision in detail [10,11]. On the other hand, mfERG is a test that more
accurately and in detail reflects localized problems by its ability to precisely detect electrical
activity in different regions of the retina and generate topographic maps. The P1 wave
amplitude maps in the test visualize the P1 wave amplitude densities, the positive peak
following the first negative deflection, providing a detailed map of the local effects of RP in
the retina [12]. In this context, grayscale maps and P1 wave amplitude maps have been
effectively evaluated before and after stem cell applications in the treatment of RP patients
in recent years. For example, two separate studies by Oner and Kahraman reported similar
improvements in both grayscale maps and P1 wave amplitude maps after treatment in
individuals with RP [13,14]. These findings suggest that grayscale and P1 wave amplitude
maps may be potential parameters in the assessment and monitoring of RP disease.

Nowadays, the role of biomedical images increases quickly due to clinical diagnostic
and treatment techniques. The images offer crucial information for disease diagnosis, ther-
apy planning, and patient status monitoring. However, properly analyzing and classifying
these images is often a complex and challenging process. Machine-learning models are a
powerful tool to automate this process and obtain more reliable results. On the other hand,
the success of machine-learning models strongly depends on the quality and relevance of
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the features extracted from biomedical images. In this context, feature extraction is the
process of extracting meaningful information from raw images and directly affects the
performance of classification models. On biomedical images, these features are usually
mathematical metrics representing visual features such as texture, shape, color, and so on.
These selected features significantly improve the performance of machine-learning models
in classification, segmentation, and other image analysis tasks. In recent years, feature
extraction processes have been based on deep learning architectures such as Convolutional
Neural Networks (CNNs). However, CNN-based approaches require large datasets for
the classification of biomedical images [15-19]. This could limit the effectiveness of CNN
models due to ethical restrictions and difficulties in accessing patient data and may lead
to performance losses when working with smaller datasets. In this context, traditional
handcrafted feature extraction methods such as grayscale, Gray Level Co-occurrence Matrix
(GLCM), RGB, HSV, and histogram, which are widely preferred in the literature, are very
useful, especially for small datasets due to their potential to achieve successful results with
less data [20]. Hence, in this study, we propose the use of an innovative fusion model
that combines handcrafted features from grayscale maps (gray tone and GLCM histogram
features) and P1 wave amplitude maps (RGB and HSV histogram features) for automatic
classification of RP stages with machine-learning models. In addition, this study aims to
optimize the feature vector, identify the features that are important in the staging of RP, and
improve the overall accuracy of machine-learning models through feature selection using
the Random Forest [21] algorithm. This approach can increase the reliability of clinical
decision support systems by achieving higher accuracy rates in diagnostic processes.
The main contributions of this paper are given below:

e  Firstly, in this study, we present a novel method for automatic staging of RP by
fusing handcrafted features extracted from VF grayscale maps and mfERG P1 wave
amplitude maps and using them as input data to machine-learning algorithms such as
Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbor (KNN), and
Discriminant Analysis (DA). To the best of our knowledge, this is the first study to use
grayscale maps and P1 wave amplitude maps for the staging of RP.

e  Secondly, we determine the best handcrafted features to optimize the performance of
machine-learning models by performing feature selection with the RF algorithm.

e  Thirdly, this paper contributes to the field of ophthalmology by validating the effec-
tiveness of grayscale maps and P1 wave amplitude maps in the staging of RP disease.

e  Finally, our study shows that the automatic detection of RP stages can offer important
support to researchers in managing the disease and determining optimal treatment.

Related Works

Previous studies have demonstrated that handcrafted features can successfully classify
and detect diseases in a variety of medical images [22]. For example, it has been revealed
that handcrafted features can be effectively used to classify diabetic retinopathy [23-25]
and glaucoma [26,27] from fundus images, detect breast cancer [28,29] from histopatho-
logical images, and detect COVID-19 [30,31] from X-ray or computed tomography images.
Nevertheless, there are no studies in the literature that employ handcrafted features in
the staging of RP. Instead, more common in the literature are segmentation-based studies
on the binary classification of RP as patient vs. health, multi-classification with other eye
diseases, and segmentation-based studies for the diagnosis of RP. In this context, a few
machine-learning papers on RP are discussed below.

Rashid et al. [32] proposed a modified Squeeze-and-Excitation ResNet (SE-ResNet)
architecture to classify pigment landmarks in color fundus images of individuals with
RP. They reported that this modified model exhibited high performance in successfully
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classifying different pigment types related to RP. Liu et al. [33] showed an Infant Retinal
Intelligence Diagnostic System (IRIDS) for the early detection of nine different fundus
diseases, including RP. This system classified fundus diseases with an average accuracy of
96.45% using deep learning techniques. Wang et al. [34] designed a deep learning-based
platform to automatically identify 30 different fundus diseases (including RP) using ultra-
wide angle fluorescence angiography images. Based on the ConvINeXt architecture, this
system enabled diagnosis and evaluation with an accuracy comparable to retinal experts
and achieved high AUC values on test datasets. Alharbi [35] developed a hybrid deep
learning model to categorize five different diseases, glaucoma, normal, RP, maculopa-
thy, and pathological myopia, from fundus images. This model is based on a classifier
that includes preprocessing, vessel segmentation, feature extraction, and integration of
SqueezeNet and a Long-Term Recurrent Convolutional Network (LRCN). As a result of the
study, 98% accuracy was achieved. Arsalan et al. [36] proposed two CNN-based networks
for the computer-aided diagnosis of RP: a single spatial combination network and a triple
spatial combination network for segmentation. Their CNNs showed high performances in
scanning individuals with RP and analyzing RP disease. Nagasato et al. [37] introduced
a system based on deep learning models such as Visual Geometry Group-16, Residual
Network-50, InceptionV3, DenseNet121, and EfficientNetB0 to predict the visual function of
RP patients from ultra-wide-angle fundus autofluorescence images and objectively monitor
disease progression. Wang et al. [38] compared deep learning model segmentation with
manual correction to conventional manual grading (MG) in measuring the photoreceptor
ellipsoid region area and outer segment volume in subjects with RP. Their findings revealed
that this approach could reduce the burden of human assessors for the measurement of
biomarkers in assessing disease progression and treatment outcomes. Chen et al. [39] em-
ployed a transfer learning-based model for the automatic detection of RP from color fundus
photographs. They reported that the Xception model had the highest performance with
96%. Wang et al. [40] constructed a hybrid model combining U-Net and sliding window
CNN models for the automatic segmentation of retinal layers in spectral domain OCT
B-scans of patients with RP. They found that this hybrid model improved the measurement
of retinal layer thickness. Khaing et al. [41] suggested a U-Net-based segmentation model
named ChoroidNET for the segmentation of choroidal parameters using OCT images of
RP patients. They presented that this approach provides a superior performance in both
quantitative and qualitative segmentation of the choroidal layer and choroidal vessels.
Masumoto et al. [42] reported that RP can be detected from healthy eyes with high sen-
sitivity and specificity using deep neural networks on ultrawide-angle pseudo color and
autofluorescence images. ladanza et al. [43] developed a machine-learning-based clinical
decision support system using pupillometry data to classify RP from control groups in
pediatric patients. In their study, two separate SVM algorithms were used to classify the
features obtained from pupillometric data, and 84.6% accuracy, 93.7% sensitivity, and 78.6%
specificity rates were obtained from this system.

In this context, several methods have been developed for RP classification and analysis,
but the existing focus is on identifying the different stages of RP. In this study, color and
texture handcrafted features of grayscale maps and P1 wave amplitude maps are used to
automatically classify the stages of RP.

2. Materials and Methods

This section explains the proposed approach to multi-classifying early stage (ES), mid-
stage (MS), and advanced stage (AS) of RP using grayscale maps and P1 wave amplitude
maps. Figure 1 shows the overall framework of the proposed approach. As shown in
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Figure 1, the various steps used in the classification of grayscale maps and P1 wave
amplitude maps are detailed in the following sections.
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Figure 1. Framework of the proposed approach.

2.1. Patients Database

For this research, the dataset was provided by the Ophthalmology Unit of Actbadem
Kayseri Hospital. The study was also approved by the Acibadem Mehmet Ali Aydinlar
University Medical Research Assessment Board (ATADEK), and the procedures were
conducted in accordance with the Declaration of Helsinki (2023-16/553). All subjects who
participated in the study were 18 years of age or older and were given comprehensive
information and informed consent prior to participation in the experiments.

The diagnosis of RP was based on clinical history, VF tests, and mfERG recordings
using a recording protocol in accordance with the International Society for Clinical Elec-
trophysiology of Vision (ISCEV) standards. The VF test was performed on a Humphrey
VF analyzer with the 30-2 program using the Swedish Interactive Threshold Algorithm
(SITA) standard. The 30-2 program evaluates 30 fields at 76 points. In VF, the grayscale
map is a visual representation of retinal sensitivity that numerically expresses the perceived
stimulus intensity threshold in decibels (dB). The darker regions on these maps indicate
reduced retinal sensitivity [10]. On the other hand, the mfERG test was performed on the
Metrovision MonPackOne system in accordance with ISCEV standards to evaluate retinal
function in detail. This test divides the retinal surface into 61 hexagonal regions, enabling si-
multaneous electrophysiologic responses to be obtained from each region [12]. The mfERG
responses consist of three basic components, namely N1, P1, and N2. In particular, the
P1 amplitude response gives important information about the functional condition of the
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retina [44]. The MonPackOne system automatically generates P1 wave amplitude maps
based on P1 wave amplitudes recorded in each of the 61 hexagonal regions.

This experimental study recruited a total of 124 individuals with RP (67 right eyes and
57 left eyes). Also, patients with additional eye disorders such as uveitis, cataracts, and
glaucoma were excluded. In this study, the staging of RP was performed by two expert
physicians separately according to the grading criteria of the parameters of VF and mfERG
tests in the work proposed by Oner and Kahraman [9]. As a result, individuals with RP
were categorized into three stages: early (32 individuals), moderate (44 individuals), and
advanced (48 individuals). Based on the staging, all demographic characteristics of the
study subjects are presented in detail in Table 1. In addition, Figure 2 shows examples of
grayscale maps and P1 wave amplitude maps of the three stages.

Table 1. Demographic characteristics of the stages of RP.

Class of Patients Total Subjects (Eyes) Male/Female Age (Mean £ SD)

ES 32 (16 RE/16 LE) 16/16 38.65 £ 17.64
MS 44 (19 RE/25 LE) 24/20 35.70 £ 14.45
AS 48 (32 RE/16 LE) 33/15 32.60 £ 11.41

ES — early stage; MS — mid-stage; AS — advanced stage; RE — right eyes; LE — left eyes; SD — standard
deviation.

(a) Grayscale maps and P1 wave
amplitude maps for ES

(b) Grayscale maps and P1 wave
amplitude maps for MS

(c) Grayscale maps and P1 wave
amplitude maps for AS

Figure 2. Examples of grayscale maps and P1 wave amplitude maps of different stages of RP:
(a) grayscale maps and P1 wave amplitude maps for early stage (ES), (b) grayscale maps and P1 wave
amplitude maps for mid-stage (MS), (c) grayscale maps and P1 wave amplitude maps for advanced
stage (AS).

2.2. Preprocessing

The grayscale maps and P1 wave amplitude maps for this study were obtained from
different medical modalities, so there are size differences between these maps. Before
feature extraction, these maps were resized to ensure consistency in the analytic process. In
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this context, the original size of the grayscale maps was 910 x 1070 pixels, and the P1 wave
amplitude maps were 680 x 720 pixels; both maps were resized to 390 x 440 pixels.

2.3. Handcrafted Feature Extraction

The proposed approach for multiple classifications of RP as ES, MS, and AS in grayscale
maps and P1 wave amplitude maps is based on handcrafted features. Handcrafted features
are obtained by analyzing the information on images using computational methods. These
represent complex information in a simpler way, optimizing the use of resources such
as memory and computational power. In this approach, due to the importance of color
and texture features in staging RD, we extract histogram-based statistical and GLCM
texture features from grayscale maps and RGB and HSV color space features from P1 wave
amplitude maps. We then fuse the features extracted from these two maps. Details about
these extracted features are presented below:

Gray Level Co-occurrence Matrix (GLCM): The Gray Level Co-occurrence Matrix
(GLCM) developed by Haralick et al. [45] calculates the frequency of occurrence of certain
gray level pixels with neighboring pixels at different angles in grayscale images. Features
such as homogeneity, contrast, correlation, and energy are obtained using these four
different angles (0°, 45°, 90°, and 135°) [20]. As a result, a 16-dimensional feature vector
was extracted from grayscale maps using GLCM.

Gray tone: Gray tone is an image analysis process that represents the brightness levels
in an image only in shades of gray between black and white. A 6-dimensional feature
vector is obtained by calculating color space features such as mean, standard deviation,
skewness, energy, entropy, and kurtosis using the histogram of grayscale maps.

Color space: Color space is a system in which each color in an image is numerically
described by specific coordinates. In this study, RGB and HSV color spaces are utilized
to extract features from P1 wave amplitude maps based on histograms. RGB is preferred
for the study of intensity distributions in the red, green, and blue color channels. HSV is
applied for detailed characterization of hue, saturation, and brightness components [46].
We extracted features such as mean, standard deviation, skewness, energy, entropy, and
kurtosis using RGB and HSV histograms [47]. These two-color spaces obtained a total of
36 features. Accordingly, a total of 58-dimensional feature vectors were created by fusing
the features extracted from the grayscale maps and P1 wave amplitude maps to identify
the stages of RP. The formulas and definitions of the statistical features obtained from this
gray tone, GLCM, RGB, and HSV are shown in Table 2.

Table 2. The formulas and definitions of statistical features obtained from GLCM, RGB, and HSV.

Name of Features Formulas Descriptions
N-—-1 . . . . . . .
. _ p(i j) The homogeneity measures the intensity similarity
GLCM homogeneity N ij=01+ (i — ])2 of pixels in the GLCM matrix.
N The contrast is the measurement of local intensity
GLCM contrast C= ; (i =7)7p(ij) variations in grayscale images.
1,j=0
. N=1 (i —u)-(j—u)p(i,f) The correlation describes the relationship between
GLCM correlation G = z]E 0 o2 the gray levels of neighboring pixels in an image.
N-1 = 5 The energy measures the sum of the quadratic
GLCM energy E= [/Z: 0 p(i.j) components in the GLCM matrix.
Mean i = % Nil pi The mean calculates the average color value of

=0 ] each channel in RGB and HSV color spaces.
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Table 2. Cont.

Name of Features

Formulas Descriptions

Standard deviation

The standard deviation represents the color
N1 distribution of each channel in RGB and HSV

;= N]‘ . (pij - ﬂz‘) color spaces.

The skewness calculates the symmetry of the

Skewness 6 — 31 Nil ( pii — V‘)S intensity distribution of each channel in RGB and
' N j=0 v HSV color spaces.
Nt The energy is the sum of the quadrature
Energy e = E_ (pij) 2 components of the channels in RGB and HSV
j=0 ! color spaces.
R = N . The entropy measures the irregularity in RGB
Entropy Er = L p(i,j) log(p(if)) and HSV images.
The kurtosis calculates the peak of the color
Kurtosis ko= 41 Nil ( pii — V')4 distribution in RGB and HSV according to the
! N =0 g ' normal distribution.

Note: i and j refer to row and column numbers, respectively. p(i,j) and p;; represent the probability distribution
of the channels in the color spaces at the jth pixel.

2.4. Feature Selection Based on Random Forest (RF)

Feature selection is a key step used to optimize the performance of machine-learning
models and ensure that the models are not affected by redundant information. To select
features, we use the Random Forest (RF) algorithm, which has shown strong performance in
analyzing data and is popular among machine-learning approaches. The basis of RF-based
feature selection is the use of the Gini index or the out-of-bag (OOB) error rate to assess
the impact of each feature during model training, thereby quantitatively measuring the
importance of the features [48]. Accordingly, the steps of the RF feature selection approach
are described below:

Step 1:

K classification trees are generated from the original training dataset. K is the number
of trees used in the model. This step includes building different trees using different subsets
of the dataset.

Step 2:

For each tree, OOB samples are created. These samples consist of data not used during
model training. The error of the OOB samples for each tree t is expressed as errOOB;.

Step 3:

The value of each feature C; is randomly shuffled across OOB; samples to create a
corrupted sample OOB:. This sample is used to measure the impact of features on model
performance. The importance of the feature is calculated by the formula in Equation (1) [49]:

1
Ntree

G y Nire (errOOBi - errOOB) (1)

i=1

Here, the feature importance value (C;) indicates how much a particular feature
contributes to the prediction performance. In the proposed study, the number of 100 trees
is used, which has led to successful results in previous studies [50].

The RF approach calculates the importance score of each feature and ranks them;
however, it does not directly determine the optimal number of features to include in the
classification. Therefore, in this study, the features ranked by RF were sorted in descending
order based on their importance scores. Subsequently, the top 5, 6, 7, 8, and 9 features were
incrementally evaluated, and classification was performed at each step to analyze changes
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in model performance. This stepwise strategy helped to reduce redundant information

while improving computational efficiency [50].

2.5. Machine-Learning Models with All Features and Selected Features

In this study, four different classification models were used to predict RP stages with

58 features extracted from grayscale maps and P1 wave amplitude maps. These models are
the well-known SVM, DT, KNN, and DA algorithms. The hyperparameters of the models
are tuned using Grid Search (GS) to achieve an optimal classification performance. The

following describes the main features of the four machine-learning models:

Support Vector Machine (SVM) is a commonly used machine-learning algorithm
designed to classify both linear and nonlinear separable datasets by forming an optimal
hyperplane that maximizes the margin between classes. To establish the basic structure
of the SVM, the regularization parameter C, the kernel function, the kernel degree, and
the coding method need to be determined. Accordingly, GS was applied to determine
the optimal hyperparameters, and 1000 was chosen as the regularization parameter C,
Gaussian (RBF) as the kernel function, 2.2 as the kernel order, and one vs. one as the
coding method.

Decision Tree (DT) is a machine-learning classifier that can be applied to regression
and classification problems by operating based on a divide-and-conquer strategy.
It consists of a tree structure where each internal node represents a decision rule,
and the leaf nodes correspond to class labels. The classification process starts at the
root node, where the samples are recursively split according to their feature values
until they reach a terminal leaf node. To improve the classification performance of
the DT model, it is important to determine its hyperparameters. In this context, the
optimal configuration using GS involved setting the minimum number of leaf node
observations to 1, the maximum number of decision splitting operations to 32, and the
splitting criterion to 2.

K-Nearest Neighbor (KNN) is a distance-based supervised learning algorithm used
for classification and regression tasks. Unlike other algorithms, KNN does not create
an explicit training phase; instead, it stores all training set samples and classifies new
data based on similarity measures. The classification process involves calculating
the distance between a new data point and all training set instances and assigning
the class label based on the majority vote of k nearest neighbors. The value of k (the
number of neighbors) and the distance metric used are two key hyperparameters
that significantly affect the performance of the KNN model. Therefore, the choice of
optimal hyperparameters is critical. In this study, the k parameter of the KNN model
is set to 2, and the distance metric is set to Cityblock using the GS method.
Discriminant Analysis (DA) is a statistical and machine-learning model applied to
data visualization, classification, and dimensionality reduction tasks. This model
aims to separate different classes in a dataset by finding a discriminant function that
maximizes the separation between them. DA can be grouped into Linear Discrimi-
nant Analysis (LDA) and Quadratic Discriminant Analysis (QDA), both of which are
widely used in various classification problems. LDA assumes that different classes
share the same covariance matrix, leading to linear decision boundaries, while QDA
allows each class to have its own covariance matrix, leading to quadratic decision
boundaries. In this study, GS was applied to the type of discriminant function and the
amount of regularization to improve the classification performance by optimizing the
hyperparameters of the DA model. As a result, QDA is set as the optimal discriminant
function, and the optimal gamma value is set to 0.
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In addition, using the RF model in this study, the 9 features with the highest importance
among 58 features were identified. These features were gradually added to the dataset in
order of importance (first 5, then 6, 7, 8, and 9 features) in different combinations and used
for the staging of RP with the four machine-learning algorithms described.

2.6. Performance Evaluation Metrics

To evaluate the performance of classification models and ensure their reliability and
generalizability is a fundamental approach in machine learning. Especially in the case of
medical data classification, several well-known performance metrics are used to evaluate
the efficiency of a model. In this study, confusion matrix, accuracy, precision, recall, F1
score, specificity, Receiver Operating Characteristic (ROC) curve, and Area Under the
Curve (AUC) are used to assess classification performance. The definitions of these metrics
are presented in the figure below:

e  The confusion matrix enables a comprehensive summary of a classifier’s predictions
by comparing predicted to actual class labels. It is made up of four basic components.
These are true positives (TPs), representing correctly classified positive examples; true
negatives (TNs), representing correctly classified negative examples; false positives
(FPs), where negative examples are misclassified as positive; and false negatives (FNs),
where positive examples are misclassified as negative.

e  Accuracy is a metric that represents the ratio of correctly classified samples to the total
number of samples. It is expressed as Equation (2) below:

Accuracy = IP+1IN
Y= TP+ TN + FP + EN

)

e  Precision, also known as positive predictive value, measures the proportion of correctly
predicted positive samples among all samples classified as positive. It is calculated by
the formula given in Equation (3):

TP

P .. _
recision 7TP T FP

)
e  Recall, also named sensitivity, measures the model’s ability to correctly identify all
positive samples. It is calculated by the formula in Equation (4):

TP

Recall = m

)

e  The F1 score represents the harmonic mean of precision and recall and provides a
balanced measure when both false positives and false negatives need to be minimized.
The formula for this metric is presented in Equation (5):

)

F1 Score = 2 x <Recall X Prec151on>

Recall + Precision

e  Specificity, also known as true negative rate, determines the ability of the classifier to
correctly identify negative examples. Equation (6) defines the formula for specificity:

Specificity = % (6)
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Split 2
Split 3
Split 4

Split 5

e The ROC curve is a graph which shows the relationship between the true positive
rate (TPR) and the false positive rate (FPR). AUC, a summary indicator of this curve,
is used to measure the success of the classifier in distinguishing between different
classes. The formula for AUC is given in Equation (7) [51]:

1/ FP FN
AUC_l_Z(TN+FP+TN+FN> @

3. Results

In this section, we present the results for the staging of RP using machine-learning
models such as SVM, DT, KNN, and QDA. Our approach is the first study to use both
modalities for the automatic staging of RP by combining handcrafted features extracted
from VF grayscale maps and mfERG P1 wave amplitude maps. Furthermore, we performed
feature selection using the RF algorithm, allowing us to identify the most important features
and optimize the classification performance. The classification results obtained using all
extracted features are compared with those obtained after RF-based feature selection,
highlighting the impact of feature reduction on staging accuracy.

3.1. Experimental Setup

The dataset used in this study consists of a total of 124 images belonging to three
classes. In this paper, 5-fold cross-validation (CV) is used to ensure a robust performance
evaluation of the proposed model. In the 5-fold CV approach, the dataset is randomly
divided into five equal folds. During each iteration, four folds are used for training and one
fold for testing. This process is repeated five times, allowing each fold to be used as a test set
exactly once. In each iteration, the model is trained on the training folds and evaluated on
the testing fold so that the model learns efficiently. When the training process is complete for
all folds, CV-based overall scores for the confusion matrices, accuracy, precision, sensitivity,
specificity, F1 score, and AUC metrics are extracted, enabling a comprehensive evaluation
of the model’s performance. Figure 3 shows the scheme of the 5-fold CV. This proposed
method is implemented in Python 3.8.10 on a 12th Generation Intel(R) Core (TM) i7-12650H
2.30 GHz processor using the Keras framework within the Spyder environment. For image
preprocessing and performance evaluation, the NumPy, Pandas, OpenCV, and scikit-learn
libraries were utilized.

Train Set | Test Set

Figure 3. The scheme of k-fold cross-validation with k = 5.

Fold-1 Fold-1 Fold-1 Fold-1 Fold-1 —» Performance for Split 1
Fold-2 Fold-2 Fold-2 Fold-2 Fold-2 ¥  Performance for Split 2
Fold-3 | Fold-3 | Fold3 | Fold3 | Fold3 ¥ Performance for Split 3 el
Performance
Fold-4 Fold-4 Fold-4 Fold-4 Fold-4 >  Performance for Split 4
Fold-5 Fold-5 Fold-5 Fold-5 Fold-5 >  Performance for Split 5
. g »
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3.2. Evaluation of Feature Selection with RF

In this study, gray tone and GLCM texture features were extracted from grayscale
maps to obtain a total of 22 features, and RGB and HSV color space features were extracted
from P1 wave amplitude maps to obtain a total of 36 features to estimate the stage of
RP. A total of 58 features extracted from these two maps were then fused to generate a
comprehensive feature vector for analysis. However, since the performance evaluation
of such a large feature vector may increase the computational cost for machine-learning
algorithms, the RF method was used for feature selection.

Figure 4 shows the ranking of 58 features according to their importance scores calcu-
lated by the RF method. Since using all 58 features may introduce redundant information
and reduce computational efficiency, the selection of the most relevant features becomes
essential for optimal classification. Therefore, the top-ranked features were incrementally
evaluated, and it was observed that model performance improved up to the inclusion of
the seventh feature but started to decline thereafter. As a result of the analysis, nine features
with the highest importance were selected to evaluate the classification performance. The
names of the selected features, the imaging modality they belong to, and their importance
scores are listed in detail in Table 3. According to the results in Table 3, the feature with
the highest importance score is RGB Entropy_R (0.6118), extracted from the mfERG P1
wave amplitude maps. This is followed by GLCM Contrast_90° (0.5290), extracted from VF

grayscale maps.

0.7
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Features

Figure 4. Feature importance ranking of 58 features obtained from grayscale and P1 wave amplitude

maps based on RF algorithm.
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Table 3. Importance scores of the 9 selected features using the RF algorithm.

Ranking of Features = Imaging Modality Names of Features Importance Score
1 MIfERG RGB Entropy_R 0.6118
2 VF GLCM Contrast_90° 0.5290
3 MfERG RGB Std_R 0.5218
4 VF Hom o(?g%r?el\i/’{y_%o 0.5208
5 MfERG RGB Energy_R 0.4966
6 VF Histogram Kurtosis 0.4868
7 VF GLCM Energy_90° 0.4744
8 MfERG RGB Kurtosis_R 0.4404
9 VF GLCM Correlation_90° 0.4254

Importance Score: Importance scores indicate the relative contribution of each feature to the classification model,
as computed by the Random Forest algorithm based on OOB error estimation.

When the distribution of the features is examined, it appears that four of the nine
features selected by the RF method were obtained from the mfERG imaging modality,
while five were obtained from the VF imaging technique. In this context, RGB color space
features (RGB Entropy_R, RGB Std_R, RGB Energy_R, and RGB Kurtosis_R) extracted
from mfERG P1 wave amplitude maps seem to have high importance scores. On the other
hand, GLCM-based textural features (Contrast_90°, Homogeneity_90°, Energy_90°, and
Correlation_90°) extracted from the VF grayscale maps are observed to be prominent.

3.3. Results of Classification Models with All Features

This section presented the performance results of four different machine-learning
models, SVM, DT, KNN, and QDA, in staging RP using all extracted features. The per-
formance metrics of these models, including overall accuracy, precision, recall, F1 score,
and specificity, are shown in Table 4. According to this table, SVM outperformed the
other models in terms of these metrics with values of 0.8710, 0.8677, 0.8839, 0.8758, and
0.9328, respectively.

Table 4. The overall performance metrics of classification models with all features.

Models Accuracy Precision Recall F1 Score Specificity
SVM 0.8710 0.8677 0.8839 0.8758 0.9328
DT 0.8468 0.8504 0.8562 0.8533 0.9233
KNN 0.8548 0.8542 0.8591 0.8566 0.9249
QDA 0.7742 0.7623 0.7987 0.7801 0.8836

In addition, Figures 5 and 6 show the overall confusion matrices and ROC curves for
each model, respectively. The confusion matrices indicated that the number of misclassi-
fications for SVM, DT, KNN, and QDA models was 16, 19, 18, and 28, respectively. As a
result, the SVM model obtained the lowest number of misclassifications. When the ROC
curves were examined, it was seen that the SVM model distinguished the ES, MS, and AS
classes in the achievement of the best performance. The AUC scores for these classes were
calculated as 0.978, 0.952, and 0.986, respectively.
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Figure 5. The overall confusion matrices of (a) SVM, (b) DT, (c¢) KNN, and (d) QDA with all features.

1 1 __
09 09
08 08
7
8 P o.
& 06 X 06
£ £ 05
G 05 % 0.
o S
a a
204 © 04
g 2
- =
03 03
02 02
ES (AUC = 0.978) ES(AUC= 0.939)
04 ——— MS (AUC = 0.952) o1 MS (AUC = 0.851)
——— AS (AUC = 0.986) AS (AUC = 0.898)
[ . . 0
0 02 04 06 08 1 o 02 04 06 08 1
False Positive Rate False Positive Rate
@ ()
! 1
09 o8
08 08
27 o7
& 06 B
’ 06
g P
g 05 :,é 05
a
g 04 2 04
= 2
03 o
02 i
— = 02
pole ey ES(AUC=0.812)
04 el 01 ——— MS (AUC = 0.790)
AS (AUC = 0.968) 5 e e oA
o . P

0 02 04 06 08 1
False Positive Rate

©

0 0.2 04 06 08 1
False Positive Rate

@

Figure 6. The overall ROC curves of (a) SVM, (b) DT, (c) KNN, and (d) QDA with all features.

3.4. Results of Machine Learning Models with Selected Features with RF Algorithm

In this section, the nine features with the highest importance determined using the RF

algorithm are gradually added to the dataset in order of importance, and the classification

results are evaluated with different combinations. First, classification was performed using

the first five features, and then the analysis was extended by adding six, seven, eight, and
nine features. In this process, SVM, DT, KNN, and QDA models were used to stage the RP.
Table 5 presents the overall performance metrics obtained from the classification processes

of these models using five, six, seven, eight, and nine features. According to this table,
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the SVM model achieved the highest performance in the classification with five features,
yielding an accuracy of 0.9355, precision of 0.9362, recall of 0.9402, F1 score of 0.9382, and
specificity of 0.9670, making it the most successful classifier. When six features were used,
the SVM model outperformed the others, achieving 0.9435 accuracy, 0.9419 precision, 0.9423
recall, 0.9421 F1 score, and 0.9715 specificity. For seven features, the SVM model performed
the best, achieving 0.9839 accuracy, 0.9826 precision, 0.9855 recall, 0.9841 F1 score, and
0.9917 specificity. For eight features, the SVM model obtained the highest performance with
accuracy, precision, recall, F1 score, and specificity values of 0.9516, 0.9501, 0.9574, 0.9537,
and 0.9743, respectively. Finally, using nine features, the SVM model achieved 0.9435
accuracy, 0.9426 precision, 0.9506 recall, 0.9466 F1 score, and 0.9700 specificity, making it
the best-performing classifier.

Table 5. The overall performance metrics of the machine-learning models with the selected features

using the RF algorithm.
Nl;legk?lerzgf Models Accuracy Precision Recall F1 Score Specificity

SVM 0.9355 0.9362 0.9402 0.9382 0.9670

5 DT 0.8952 0.8943 0.8923 0.8933 0.9471
KNN 0.9274 0.9154 0.9388 0.9269 0.9621

QDA 0.9194 0.9186 0.9293 0.9239 0.9573

SVM 0.9435 0.9419 0.9423 0.9421 0.9715

6 DT 0.9032 0.8990 0.8990 0.8990 0.9517
KNN 0.9435 0.9454 0.9427 0.9440 0.9715

QDA 0.9355 0.9343 0.9323 0.9333 0.9679

SVM 0.9839 0.9826 0.9855 0.9841 0.9917

DT 0.9194 0.9217 0.9211 0.9214 0.9600

7 KNN 0.9677 0.9681 0.9678 0.9680 0.9839
QDA 0.9516 0.9467 0.9574 0.9520 0.9746

SVM 0.9516 0.9501 0.9574 0.9537 0.9743

8 DT 0.8952 0.8955 0.8933 0.8944 0.9476
KNN 0.9435 0.9426 0.9424 0.9425 0.9717

QDA 0.9355 0.9378 0.9356 0.9367 0.9671

SVM 0.9435 0.9426 0.9506 0.9466 0.9700

DT 0.8871 0.8810 0.8875 0.8842 0.9422

? KNN 0.9274 0.9211 0.9315 0.9262 0.9624
QDA 0.9355 0.9372 0.9370 0.9371 0.9669

Furthermore, the results indicated that the best classification performance in all of
the SVM, DT, KNN, and QDA models was obtained when seven features were used: RGB
Entropy_R, GLCM Contrast_90°, RGB Std_R, GLCM Homogeneity_90°, RGB Energy_R,
Histogram Kurtosis, and GLCM Energy_90°. Accordingly, Figures 7 and 8 depict the
overall confusion matrices and ROC curves obtained with the dataset generated using the
seven best-performing features for each model, respectively. When the confusion matrices
were analyzed, the number of misclassifications for SVM, DT, KNN, and QDA models was
2, 10, 4, and 6, respectively. According to these results, the SVM model had the lowest
number of misclassifications. When the ROC curves were analyzed, it was determined
that the SVM model discriminated the ES, MS, and AS classes as the best model. The AUC
scores calculated for these classes were 0.999, 0.998, and 1.0, respectively.
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Figure 7. The overall confusion matrices of (a) SVM, (b) DT, (c) KNN, and (d) QDA for the 7 best-
performing selected features with the RF algorithm.
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Figure 8. The overall ROC curves of (a) SVM, (b) DT, (c) KNN, and (d) QDA of the 7 best-performing
selected features with the RF algorithm.

3.5. Comparative Analysis of Performance Evaluation of Classification Models

In this study, accuracy, precision, recall, F1 score, and specificity were used to evaluate

the performance of the machine-learning models. Accordingly, the experimental results

of the models using all features and the models trained with the seven most important

features selected by the RF algorithm are shown in Figure 9. The results show that the

models using the seven selected features outperformed the models using all features in
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terms of accuracy, precision, recall, F1 score, and specificity. According to these results, the
SVM model with the best performance increased accuracy by 11%, precision by 11%, recall
by 11%, F1 score by 10%, and specificity by 6%, approximately.
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Figure 9. Comparative analysis of the overall (a) accuracy, (b) precision, (c) recall, (d) F1 score, and
(e) specificity of the classification models using all features (green bars) and with the 7 most important
features (blue bars) selected by the RF algorithm.

4. Discussion

In this research, we evaluated handcrafted features extracted from VF grayscale maps
and mfERG P1 wave amplitude maps to objectively and automatically classify the stages of
RP disease. These features were provided as input to machine-learning models, including
SVM, DT, KNN, and QDA, and used to discriminate the ES, MS, and AS of RP. In addition,
the performance of the models was optimized by using the RF algorithm for feature
selection. The results show that SVM can detect the stages of RP with high accuracy rates.

In the study, when all features were used, SVM outperformed the other models, with
87.10% accuracy, 86.77% precision, 88.39% recall, 87.58% F1 score, and 93.28% specificity
scores. These findings showed that the SVM model was more effective in classifying the
stages of RP compared to the other models. Furthermore, in the classification process, the
most important features determined after feature selection with the RF algorithm were
gradually evaluated. In the first stage, the models were trained using the five features with
the highest importance score, and then the models were retrained by adding one more
feature with a high importance score to this training set (top six features). This process
continued with the addition of the first seven, eight, and nine features, respectively, and
the classification performance of the models was obtained at each step. The results showed
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that when using the first seven selected features by the RF algorithm, the SVM model
achieved the highest performance, obtaining 98.39% accuracy, 98.26% precision, 98.55%
recall, 98.41% F1 score, and 99.17% specificity. These findings highlighted the significant
impact of feature selection on improving classification performance and the importance of
selecting the most discriminative features for the accurate staging of RP.

Moreover, as a result of the analysis, it was determined that the seven features that
performed the best in all models were RGB Entropy_R, GLCM Contrast_90°, RGB Std_R,
GLCM Homogeneity_90°, RGB Energy_R, Histogram Kurtosis, and GLCM Energy_90°. In
this context, GLCM-based texture features extracted from grayscale maps and RGB-based
color space features extracted from P1 wave amplitude maps were crucial in determining
the stages of RP. In particular, GLCM-based texture features successfully reflect texture
differences in grayscale maps, as well as RGB and HSV histogram-based color features
effectively representing color variations in P1 wave amplitude maps. These results suggest
that selecting the features used to detect the stages of RP not only from a single modal-
ity but also from a fusion of different structural and color-based features improves the
classification accuracy.

This paper also separately evaluated 22 features extracted from grayscale maps and
36 features extracted from P1 wave amplitude maps. Classification was implemented using
the SVM algorithm, which obtained the highest performance among the tested classifiers.
Using only the features of the grayscale maps, SVM obtained 83.87% accuracy, 83.11%
precision, 83.64% recall, 83.37% F1 score, and 91.83% specificity. Similarly, using only
features extracted from P1 wave amplitude maps resulted in 83.06% accuracy, 82.77%
precision, 83.42% recall, 83.09% F1 score, and 91.34% specificity. Nevertheless, fusing
these feature sets into a 58-dimensional vector and applying SVM resulted in a significant
improvement of the classification metrics: 87.10% accuracy, 86.77% precision, 88.39% recall,
87.58% F1 score, and 93.28% specificity. These findings demonstrated that the fusion of
features extracted from different imaging modalities leads to a significant performance
improvement in RP staging and underlines the relevance of both grayscale structural
maps and Pl-based functional data. In addition to the handcrafted feature evaluation,
we also investigated the classification performance of deep features extracted from well-
known pre-trained CNNs, namely AlexNet, VGG16, and ResNet18. Using 4096, 4096, and
512 deep features extracted from these models, respectively, classified with SVM resulted
in accuracy scores of 85.48%, 83.87%, and 85.48%. Our proposed handcrafted feature fusion
method outperforms these models, achieving an accuracy of 87.10% with all features and a
significantly higher accuracy of 98.39% when using the first seven selected features. This
result supports the idea that handcrafted features guided by domain knowledge can offer a
competitive and, in some cases, superior performance compared to deep learning models,
especially in small and medium-sized datasets, while also offering better interpretability.

Accordingly, in this study, we adapted handcrafted techniques, including GLCM-based
texture features [23,52], grayscale features [53,54], and RGB and HSV color space statistical
features [55], which have been widely used in the literature for multiple classifications of
various retinal diseases and have shown successful results, to identify the stages of RP. As a
result, the selection of these features in accordance with the studies in the literature played
an important role in the successful identification of the stages of RP. We also improved
the performance of our approach by performing feature selection using the RF algorithm,
which determines the importance of the features in the dataset and selects the features
with the highest discriminative value. After feature selection, we obtained remarkable
improvements in the overall performance metrics of the machine-learning models.
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However, this study has several limitations. Firstly, the research dataset is limited
to one country and one hospital, which may affect the reliability of the findings. Since
artificial intelligence models—particularly machine-learning algorithms—typically benefit
from large and diverse datasets, this limitation could impact the robustness of the proposed
approach. To address this issue, future studies aim to expand the dataset by collecting
additional cases from different hospitals and countries, which will help to enhance the
model’s ability to generalize across various clinical settings. Secondly, only grayscale maps
and P1 wave amplitude maps were used in this study. In future studies, the performance
of the model can be further improved by including extracted features from other imaging
modalities, such as OCT images and fundus photographs.

5. Conclusions

The previous studies focused on determining the diagnosis of RP using segmentation-
based methods [32,36,38,40,41], classifying healthy individuals with RP [39,42,43], and
differentiating RP from other retinal diseases [33-35]. However, studies to determine
the severity of RP disease are limited, and the existing studies rely on assessing RP in a
mostly manual way. In this regard, Iftikhar et al. [8] aimed to determine the severity of
RP using VA, VF width, and OCT ellipsoid zone width parameters. Similarly, Oner and
Kahraman [9] emphasized the importance of electrophysiological tests in determining the
severity of RP by integrating mfERG P1 wave amplitudes into these parameters. Both
approaches depend directly on ophthalmologists” interpretations and use manual methods
to determine the severity of RP. In this study, unlike the existing studies, we proposed a
novel approach based on machine-learning models by fusing image features of VF grayscale
and mfERG P1 wave amplitude maps to objectively and automatically determine the stages
of RP. The results showed that the SVM algorithm can classify the stages of RP with high
accuracy rates. Moreover, feature selection by the RF algorithm significantly improved the
classification performance.

In recent years, successful applications of deep learning models have been reported
for multi-class retinal disease staging, such as diabetic retinopathy [56,57], glaucoma [58],
and age-related macular degeneration [59]. However, these models are limited in terms
of practical applicability for rare diseases such as RP due to their complex architecture,
high computational requirements, and dependence on large-scale datasets. The long data-
collection time and heterogeneous clinical findings in diseases such as RP make it difficult
to develop deep learning-based staging systems. In contrast, our approach focuses on
a staging framework for RP by utilizing well-known machine-learning classifiers. This
approach can offer a practical and interpretable solution that can assist ophthalmologists in
managing RP and planning personalized treatment strategies by enabling fast and accurate
staging of the disease.
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Abbreviations

The following abbreviations are used in this manuscript:

RP Retinitis Pigmentosa
VA Visual acuity
VF Visual field

OCT Optical coherence tomography
MSERG Multifocal electroretinography
CNN Convolutional Neural Networks
GLCM  Gray Level Co-occurrence Matrix
SVM Support Vector Machine

DT Decision Tree

KNN K-Nearest Neighbor
DA Discriminant Analysis
ES Early stage

MS Mid-stage

AS Advanced stage

QDA Quadratic Discriminant Analysis
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