

VISUAL FUNCTIONS IN PATIENTS WITH LEBER HEREDITARY OPTIC NEUROPATHY (LHON)

Robin Francomme, Quentin Lenoble, Vasily Smirnov, Muriel Boucart

► To cite this version:

Robin Francomme, Quentin Lenoble, Vasily Smirnov, Muriel Boucart. VISUAL FUNCTIONS IN PATIENTS WITH LEBER HEREDITARY OPTIC NEUROPATHY (LHON). *Journal of Neuro-Ophthalmology*, In press. hal-04727465

HAL Id: hal-04727465

<https://hal.science/hal-04727465v1>

Submitted on 9 Oct 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 **VISUAL FUNCTIONS IN PATIENTS WITH LEBER HEREDITARY OPTIC**
2 **NEUROPATHY (LHON)**

3

4 Robin FRANCOMME (MD)¹,
5 Quentin LENOBLE (PhD)²,
6 Vasily SMIRNOV (MD-PhD)^{1,2} and Muriel BOUCART (PhD)²

7

8 1. Exploration de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France.
9
10 2. University of Lille, INSERM, CNRS, UMR-S 1172 – Lab. Lille
11 Neuroscience & Cognition, Lille, France.

12

13

14

15 **Corresponding authors:** Dr M Boucart, Faculté de Médecine de Lille, Pôle recherche, 1
16 place de Verdun, 59000 Lille, France. E-mail: muriel.boucart@chru-lille.fr or Dr V Smirnov,
17 Department of Neuro-ophthalmology, Lille University Hospital. E-mail :
18 vasily.smirnov@chru-lille.fr

19

20

21 **Key words :** Leber hereditary optic neuropathy, visual function, face perception, natural
22 action.

23

24 **Disclosure:** The authors did not use AI and AI-assisted technologies in the writing process.
25 This research received no specific grant from any funding agency, commercial or non-profit
26 sectors.

27

28 Word count:

29 Abstract: 238

30 Text: 3069

31 Tables: 2

32 Figures: 4

33

34

ABSTRACT

35

36 **Purpose:** The article aims to assess the impact of Leber Hereditary Optic Neuropathy
37 (LHON) on visual function in realistic tests of face recognition and execution of
38 natural actions in a prospective pilot study.

39 **Method:** Twelve participants with LHON with central scotoma ranging from 5° to 20°
40 and 12 unaffected age-matched controls took part in the experiment. In the face
41 recognition test, participants were asked to recognize the gender and the facial
42 expression of colored photographs of faces increasing dynamically in size to simulate
43 approaching faces. In the natural action test, they were asked to manipulate real
44 objects. The task was to put butter and jam on bread and to pour water in a glass while
45 their eye movements were recorded.

46 **Results:** Although most patients were able to recognize the faces' gender at a size
47 corresponding to a one-meter viewing distance, recognition of facial expressions was
48 severely impaired. Patients were on average 40 seconds slower than controls in
49 executing the natural action task. A dynamic strategy to sample information needed for
50 the execution of the task appeared in the longer scanpath and in the higher frequency of
51 saccades and fixations in patients than in controls.

52 **Conclusion:** As a function that relies on central vision, face perception is strongly
53 impaired in patients with LHON. Although the selection and manipulation of real
54 objects to execute a natural action task are slowed down, they can be performed
55 efficiently using the peripheral vision.

56

57

58 Leber Hereditary Optic Neuropathy (LHON, OMIM#535000) is a rare (~ 1:50,000)¹⁻⁴
59 maternally inherited mitochondrial disease characterized by acute bilateral loss of central
60 vision resulting from focal degeneration of the macular retinal ganglion cells and their axons
61 forming the papillomacular bundle.⁵ It is associated with severe reduction in visual acuity and
62 dense scotoma in the central visual field.⁶ Severity of visual loss and recovery are influenced
63 by the underlying mtDNA pathogenic variant: m.11778G>A (OMIM*516003.0001) is the
64 most frequently associated with the poorest visual recovery, while m.3460G>A
65 (OMIM*516000.0001) and m.14484T>C (OMIM*516006.0001) are each responsible for
66 approximately 15% of LHON cases and associated with a less severe disease course.⁷

67 The central visual field defect impacts the quality of life (QoL) as many visual
68 functions require central vision (reading, cooking, manipulating objects, visual search, face
69 recognition). Most of the limited data available on the effect of LHON on these functions
70 come from QoL questionnaires (e.g., the VF-14).⁸⁻⁹

71 To our knowledge, no study has documented the impact of LHON on face recognition
72 in realistic tests. However, it is essential to social interactions and daily life activities. Faces
73 contain information for the recognition of identity, emotions, intentions, age, gender and
74 attractiveness.¹⁰ When face perception fails as a result of neurological (e.g., prosopagnosia)
75 or ocular (e.g., macular degeneration) impairment, it may have significant psycho-social
76 consequences and lead to anxiety in social situations and social withdrawal.¹¹⁻¹⁴ Face
77 recognition difficulties have been well documented in patients with age-related macular
78 degeneration, in whom discriminating faces from non-faces is slowed down¹⁵⁻¹⁶ while more
79 complex tasks such as recognition of facial expressions or identification are markedly
80 impaired.¹⁷⁻¹⁸ Similarly, little is known about the impact of central visual field loss on the
81 execution of natural actions. Boucart et al.¹⁹ examined the oculomotor behavior of patients
82 with macular degeneration while they accomplished a natural action: a sandwich-making task.
83 They were only 30 seconds slower (mean 3.01 min ranging from 2.01–4.22 min) than
84 normally sighted age-matched controls and exhibited longer gaze durations only with
85 irrelevant objects. There was no difference in gaze duration with relevant objects between the
86 two groups.

87 Previous visual exploration studies conducted in people with central visual field loss
88 resulting from macular degeneration, have used reaching/grasping tasks with static images of
89 faces and objects^{18, 20-21} or an isolated object.²²⁻²³ However, in real-life situations, faces are
90 searched and objects are grasped in clustered environments and they vary in both distance and
91 size. We assessed the impact of central visual field loss using realistic tests in patients with

92 LHON and normally sighted age-matched individuals. Face recognition was evaluated with a
93 dynamic technique in which a photograph of a face was initially displayed at a size
94 corresponding to a viewing distance of 20 m, then automatically increased in size to simulate
95 the face approaching. For each face, a threshold equivalent viewing distance (i.e., the distance
96 at which a real face would have the same angle as the projected face) was measured for
97 recognition of gender and recognition of facial expression. Natural action was assessed in a
98 task involving the manipulation of real objects likely to be used every day for breakfast. We
99 expected patients to be more impaired in the face recognition task than in the natural action
100 one, as intact peripheral vision may be used to select relevant objects and guide movements in
101 the latter.

102

103

104 MATERIALS AND METHODS

105

106 Participants

107

108 Twenty-one patients accepted to participate. Nine were excluded owing to poor best-corrected
109 visual acuity (<1/40). Twelve patients (nine males) at a chronic stage of LHON were
110 included, ranging from 19 to 53 in age (mean : 33.6 years). They were recruited in the
111 department of Visual Explorations and Neuro-Ophthalmology of the Lille University
112 Hospital. The criteria for exclusion were a LHON “plus” with neurological disorders and the
113 presence of concomitant confounding ophthalmic pathologies such as glaucoma, cataract and
114 all types of retinopathy leading to macular involvement. The mean duration of the pathology
115 was 7.6 years. The mtDNA pathogenic variants are reported in Table 1 for each patient.
116 Binocular best-corrected visual acuity (BCVA) was measured with the ETDRS chart. All
117 patients showed a deficit in the 10° central visual field measured with the automated
118 perimeter (Métrovision MonCVOne, Metrovision (Perenches, France:
119 <https://metrovision.fr/perimeters-us.html>), as presented in Table 1 (expressed as Mean
120 Deviation : MD). Twelve normally sighted unaffected controls (six males) accepted to
121 participate, ranging from 23 to 50 in age (mean : 33.7 years). To be included, their BCVA had
122 to be above 0.1 logMAR. Group characteristics are summarized in Table 1. All the tests were
123 performed in accordance with the declaration of Helsinki and approved by the committee of
124 behavioral sciences of the University of Lille. Written informed consent was obtained from all
125 participants.

126 **Table 1.** Characteristics of participants. Binoc : binocular VA: visual acuity (logMar), MD:
 127 mean deviation, RE : right eye, LE : left eye, Cent VFD: central visual field defect, Evol:
 128 duration of disease evolution in years. V4e, III4e refer to kinetic perimetry target size and
 129 intensity used for scotoma size measurements.

	Age	Gender	Binoc VA	MD RE	MD LE	Cent VFD	Evol.	Mutation	scotoma size
P1	24	M	0.7	12.6	15.3	yes	2	ND6 (14484)	10° V4e
P2	39	M	1.5	19.7	18.1	yes	17	ND4 (11778)	20° V4e
P3	19	F	1.3	14.8	14.8	yes	6	ND4 (11778)	15° III4e
P4	19	M	1.2	20.4	17.2	yes	5	ND4 (11778)	10° III4e
P5	53	M	1.6	NT	NT	yes	8	ND4 (11778)	20° III4e
P6	45	M	1.0	4.9	13.2	yes	8	ND4 (1019)	5° V4
P7	47	F	0.7	14.8	17.8	yes	3	ND4 (11778)	10° V4e
P8	36	M	0.2	21.7	23.0	yes	20	ND4 (11778)	10° III4e
P9	44	M	0.4	6.9	6.1	yes	6	ND1 (3460)	5° III4e
P10	24	M	1.0	6.2	5.8	yes	4	ND6 (14484)	10° V4e
P11	25	M	1.3	12.5	13.6	yes	8	ND4 (11778)	20° III4e
P12	29	F	0.7	7.3	11.3	yes	4	ND4 (11778)	10° V4e
	Age	Gender	Binoc VA						
C1	24	M	0.0						
C2	35	M	0.0						
C3	50	M	0.0						
C4	32	M	0.0						
C5	23	F	0.0						
C6	23	F	0.0						
C7	46	F	0.0						
C9	29	F	0.0						
C9	27	F	0.0						
C10	41	M	0.0						
C11	30	F	0.0						
C12	45	M	0.0						

130

131

132

133 **Face recognition**

134

135 **Stimuli:** The stimuli were colored photographs of male and female faces selected from the
 136 NimStim sorted emotions database.²⁴ Each face was presented on a black background screen
 137 but separated from it by a white rectangle so that the hair was visible. Three facial expressions
 138 were selected: angry, happy and neutral. Each of the three facial expressions was presented

139 five times with different male faces and five times with different female faces for a total of 30
140 faces.

141 **Procedure:** Participants were seated at a viewing distance of 2 m from a 30-inch DELL
142 screen. Stimuli were presented in photopic conditions with light coming from the ceiling.
143 Prior to the experiment, participants were shown an example of the three facial expressions on
144 paper print. During each trial, a central white fixation cross (5°) was displayed for 1 sec on a
145 black background. Five hundred ms later, it was followed by a face covering 0.36° x 0.5°
146 simulating the angular size of an average face viewed at a distance of 20 m. The angular size
147 increased automatically in 5-cm steps, mimicking the face moving progressively closer.
148 Participants were asked to stop the progression (i.e., the increase in size) with a key press on a
149 joystick as soon as they were able to identify the gender of the face. The experimenter
150 recorded the answer (M/F) on the computer. At that moment, the participant was asked if
151 he/she was able to categorize the facial expression. If not, he/she resumed the size increase by
152 a key press and stopped it similarly when he/she recognized the facial expression (angry,
153 happy or neutral). The experimenter entered the answer (A/H/N) on the computer, which
154 recorded the equivalent viewing distance (EVD) for the categorization of gender, facial
155 expression and the accuracy of the two responses. If the patient was unable to recognize the
156 gender and/or the facial expression at the end of the display (i.e., the largest size of the face)
157 then a “no response” was recorded and the experimenter pressed the space bar to start a new
158 trial.

159

160 **Natural action**

161 **Stimuli:**

162

163 A scene layout included task-relevant objects, required to make a butter and jam sandwich
164 and to pour a glass of liquid, as well as task-irrelevant objects, some being visually similar to
165 the relevant ones to induce errors. All objects were laid out on a table within reach (see Figure
166 1) and located within an area covering 60° of the visual angle.

167

168 **Equipment:**

169

170 Eye movements were recorded binocularly with a remote Senso Motoric Instruments Eye
171 Tracking Glasses 2.0 (SMI—ETG 2.0, Germany). The eye-tracker had a sampling rate of
172 60 Hz with automatic parallax compensation. The resolution of the front camera was
173 1280 × 960 pixels. Calibration was performed with the one-point automated method
174 developed by SMI. Data management and analysis were processed with the SMI BeGaze™
175 analysis software version 3.7.

176

177 **Procedure:**

178

179 The participants were seated at the work surface, with all items within reach. They were asked
180 to open the bread bag, to take a slice, to put butter and jelly on the bread using the knife and to
181 pour water in the glass. Before the task, the layout was occluded by a white board showing a
182 calibration dot, enabling the participants to be calibrated on the plane of the working surface.
183 They had to fixate the dot while their eye positions were recorded by the eye tracker. Once the
184 calibration was completed, the white board was removed and they could start the task. They
185 were told that the layout contained irrelevant objects and asked to ignore them.

186

187 **Statistical analyses**

188 Statistical analyses were conducted with the Systat software 8 (Systat Software, Inc. San Jose
189 California). In the face recognition task, the variables measured were the EVD in meters and
190 the accuracy of responses for categorization of gender and facial expression. In the natural
191 action task, the variables measured were the duration of the pre-task (i.e., exploration before
192 the first reaching movement) and the duration of the task itself (the working phase).
193 Regarding eye movements, we measured the scanpath, the amplitude and frequency of
194 saccades, and the frequency and duration of fixations on both relevant and irrelevant objects.

195

196

197 **Fig.1.** Scene layout used. Task-relevant objects: bread, butter, jelly, knife, plate, glass, and
198 water bottle. Irrelevant objects: toothbrush, tool, yogurt, scotch tape, and stapler.

199

200

RESULTS

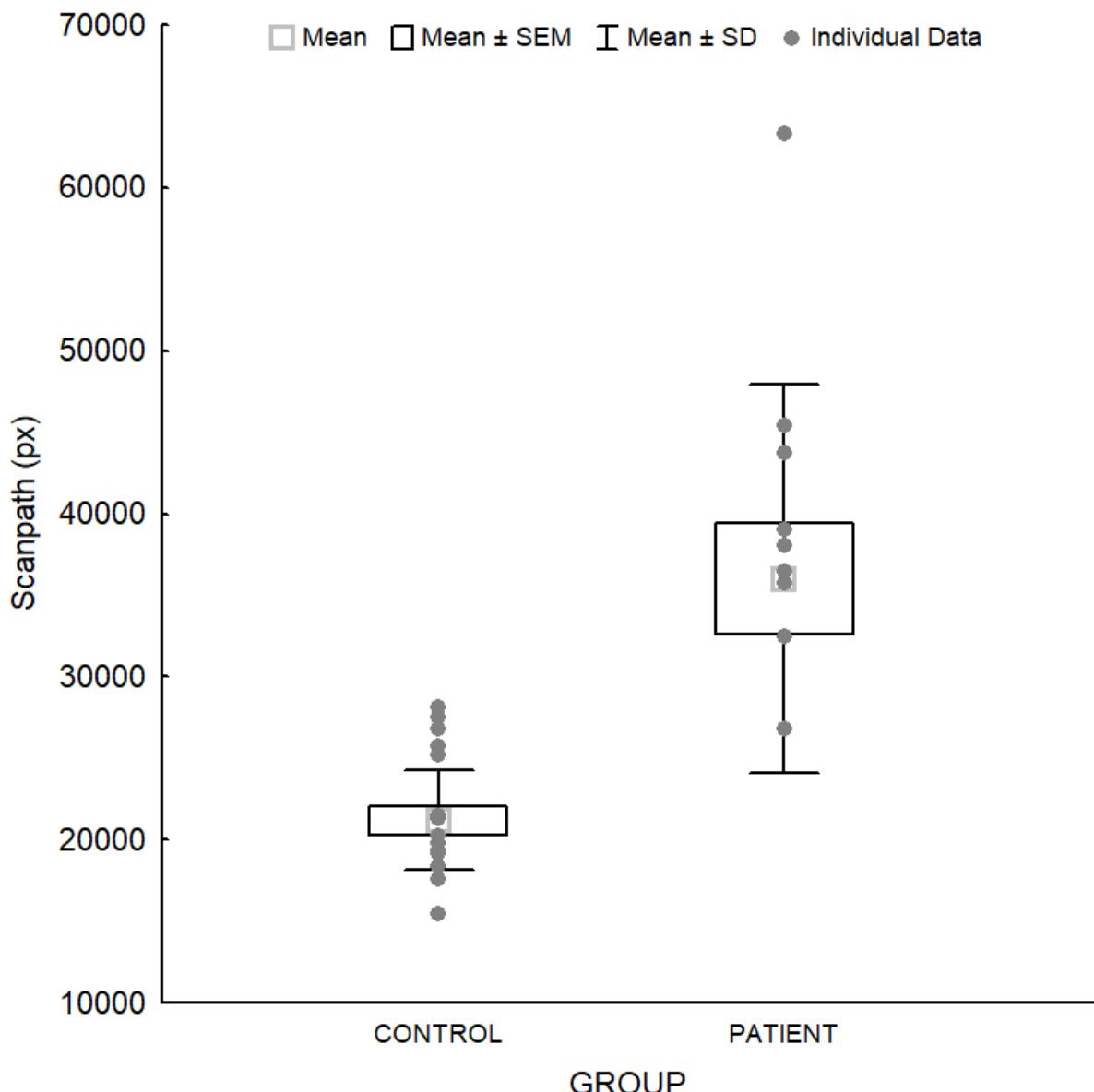
Face recognition

202 Individual data are presented in Table 2. Normally sighted participants recognized the gender
203 of the faces at an angular size corresponding to a distance of 18.35 m for male faces and 18.14
204 m for female faces. The mean number of errors was 2/30 faces. All 12 patients were able to
205 recognize the gender of the faces at an average angular size corresponding to a distance of 1.9
206 m for male faces and 1.73 m for female faces. The mean number of errors was 4.33/30 faces.

207 Facial expressions were recognized at a shorter distance (i.e., at a larger angular size) than
208 gender in normally sighted controls (happy: 16.57 m, angry: 15.49 m, neutral: 15.47 m).
209 Accuracy was high with a mean number of errors of 0.75/30. Only 7/12 patients were able to
210 recognize facial expressions with an accuracy above or equal to chance (33%). Happy and
211 neutral faces were recognized at a mean distance of 1.16 m and angry faces at a distance of
212 1.03 m. The mean number of errors was 7.83/30 with a large disparity between patients and
213 no responses were observed in many trials in patients 2, 3 and 5 (see Table 2).

214 **Table 2:** Individual data for patients with LHON and controls. EVD: equivalent viewing
 215 distance (m). M: male faces, F: female faces.

PATIENTS	EVD M faces	EVD F faces	Nb errors	EVD Angry	EVD Happy	EVD Neutral	nb errors	no response
1	1.8	1.74	3	1.00	1.12	1.08	0	0
2	1.00	1.00	4	1.00	1.00	1.00	2	28
3	1.00	1.00	4	1.00	1.00	1.00	7	12
4	1.00	1.00	4	1.00	1.00	1.00	10	0
5	1.00	1.00	11	1.00	1.00	1.00	19	11
6	1.11	1.00	1	1.00	1.00	1.00	5	0
7	1.07	1.00	2	1.00	1.00	1.00	8	0
8	6.18	6.71	3	1.39	2.83	2.91	2	0
9	4.86	2.57	5	1.00	1.01	1.00	4	0
10	1.03	1.09	8	1.00	1.00	1.00	15	0
11	1.02	1.00	5	1.00	1.00	1.00	14	0
12	1.81	1.67	2	1.00	1.00	1.03	8	0
<hr/>								
CONTROLS	EVD M faces	EVD F faces	Nb errors	EVD Angry	EVD Happy	EVD Neutral	nb errors	no response
1	19.24	19.3	2	13.52	15.64	15.96	3	0
2	18.57	18.71	0	15.36	16.36	15.00	0	0
3	18.66	17.83	2	15.61	15.59	15.32	0	0
4	16.09	17.48	0	13.27	14.03	12.99	1	0
5	18.58	17.84	4	13.96	15.24	14.35	1	0
6	18.74	18.37	2	16.51	17.37	13.36	1	0
7	19.05	18.94	2	18.19	18.16	17.49	0	0
8	16.28	15.16	2	13.17	14.39	14.56	3	0
9	18.76	18.71	5	17.42	18.11	17.41	0	0
10	19.41	17.78	2	14.46	17.93	14.78	0	0
11	18.26	18.73	0	17.6	17.91	17.9	0	0
12	18.66	18.89	3	16.9	18.16	16.63	0	0

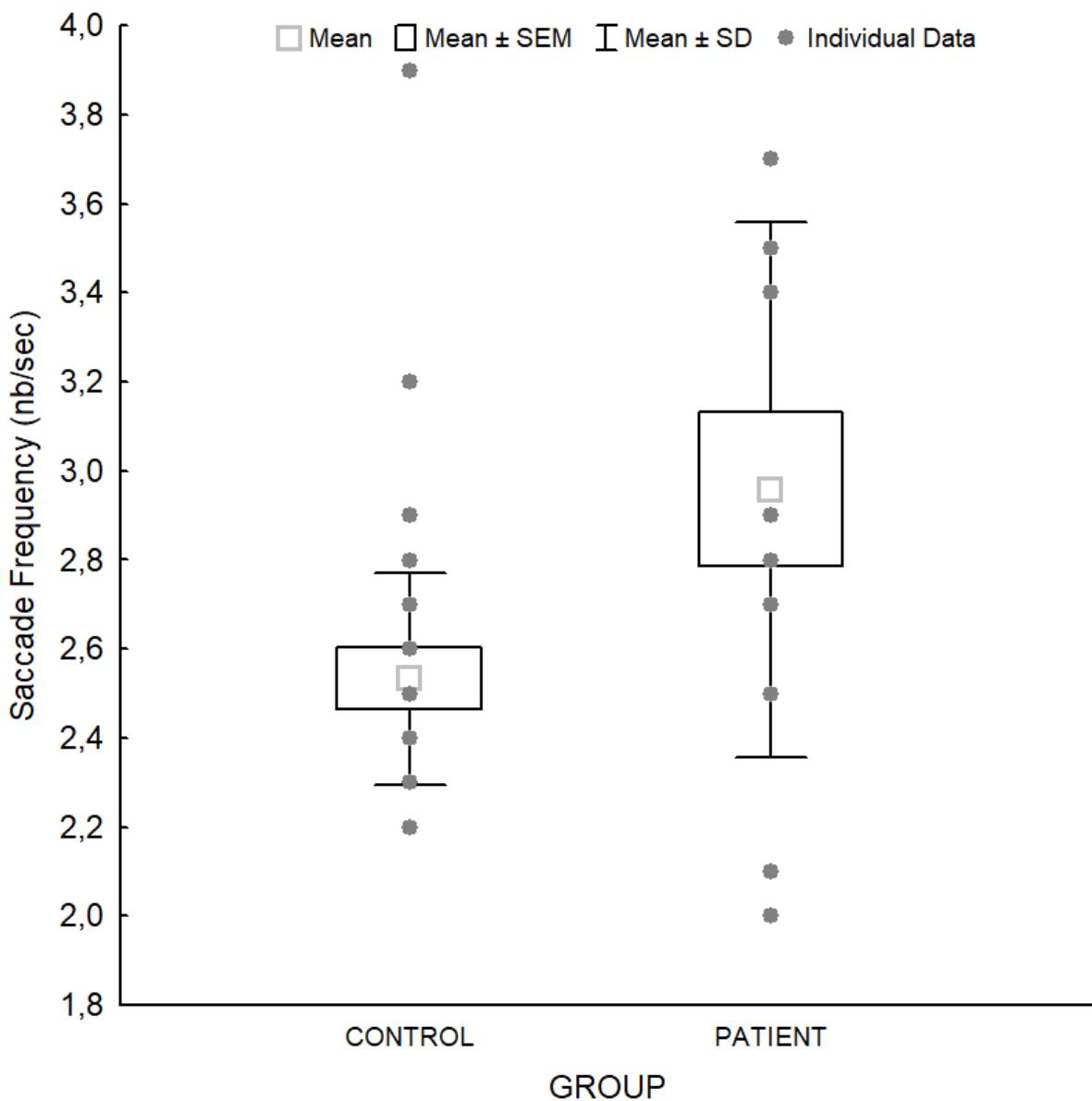

216
217

218 **Natural action:**

219 The mean duration of the pre-task was significantly longer in patients than in controls (15.2
 220 sec vs. 9.6 sec $t(22) = 2.52$, $p < .019$). Patients were on average slower than controls in total
 221 duration (including the pre-task and the working phase): 109.5 sec [ranging from 70 to 170
 222 sec] vs. 69.3 sec [ranging from 54 to 85 sec] ($t(22) = 4.6$, $p < .001$).

223 The scanpath was greater in patients than in controls (36022 pixels vs. 21210 pixels, $t(22) =$
 224 4.17, $p < .001$, see Figure 2).

225

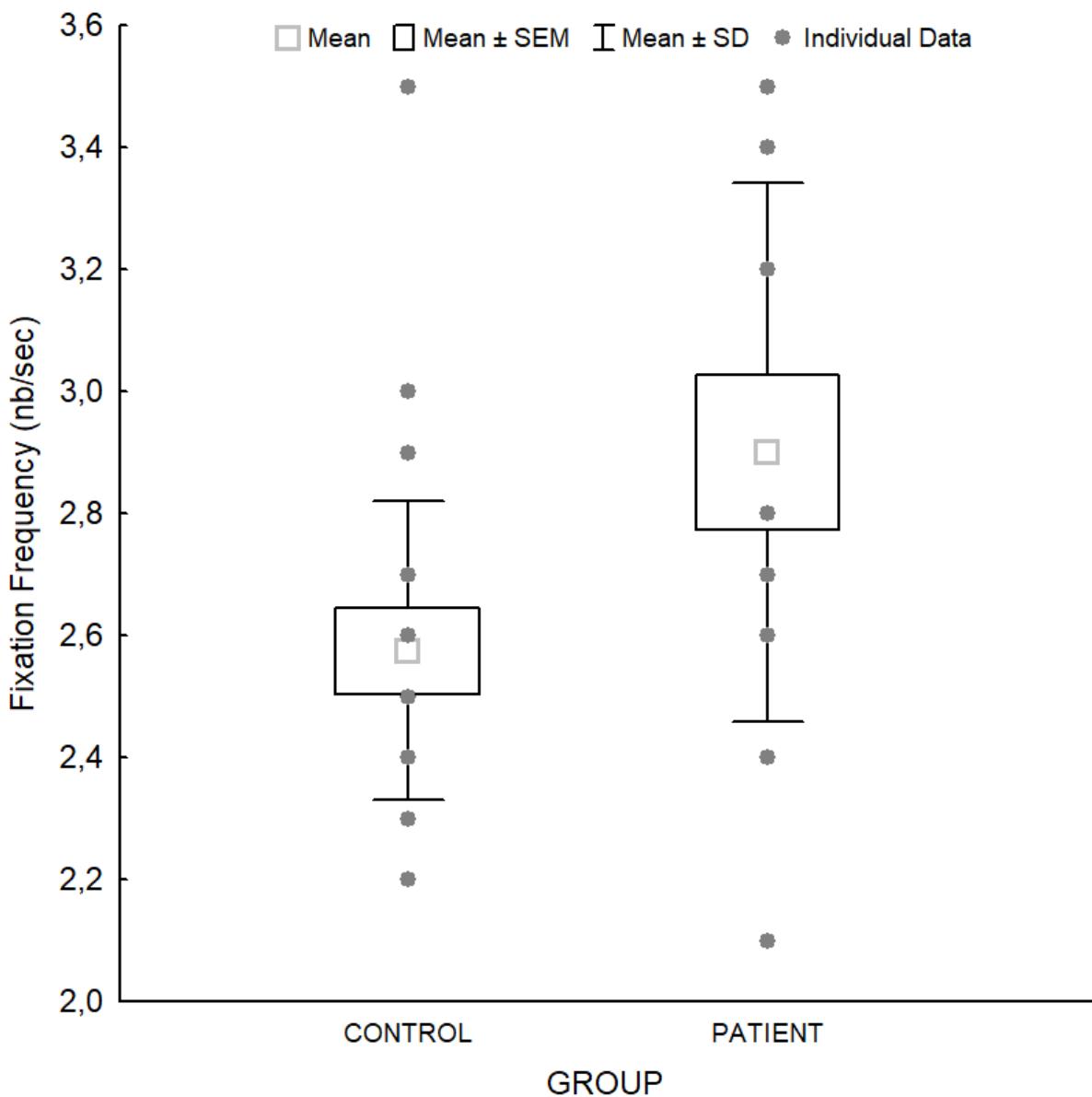

226

227 **Fig. 2.** Mean scanpath (in px) in controls and LHON patients. Individual data are represented
 228 in grey circles and means in grey squares. Box plots indicate standard error of mean (SEM)
 229 and error bars indicate standard deviation (SD).

230

231 Although the amplitude of saccades did not vary significantly between groups (5.9° vs. 5.3° ,
 232 $t(22) = 0.7$, $p = 0.47$), their frequency was higher in patients than in controls (2.96 vs. 2.53,
 233 $t(22) = 2.27$, $p < .033$; see Figure 3).

234



235

236 **Fig. 3.** Mean saccade frequency (nb/sec) in controls and LHON patients. Individual data are
 237 represented in grey circles and means in grey squares. Box plots indicate standard error of
 238 mean (SEM) and error bars indicate standard deviation (SD).

239

240 On average, the frequency of fixations was higher in patients than in controls ($t(22) = 2.23$,
 241 $p < .036$; Figure 4). Although the duration of fixations was significantly longer on relevant
 242 objects than on irrelevant ones in controls (relevant : 255 ms vs. irrelevant 189 ms, $t(11) =$
 243 3.9, $p < .002$), the difference was not significant in patients (relevant : 216 ms vs. irrelevant
 244 193 ms, $t(11) = 1.98$, $p = 0.072$). The interaction between groups and duration of fixations on
 245 relevant/irrelevant objects was marginally significant ($F(1, 22) = 4.25$, $p < 0.051$).

246

247 **Fig. 4.** Mean frequency of fixations (nb/sec) in controls and LHON patients. Individual data
 248 appear in grey circles and means in grey square. Box plots indicate standard error of mean
 249 (SEM) and error bars indicate standard deviation (SD).

250

DISCUSSION

251

252 Ocular pathologies leading to a loss of central vision and visual acuity have a
 253 significant impact on patients' QoL as reported in questionnaires. Although it is important to
 254 assess these difficulties, questionnaires are subjective measures. Except for a prospective pilot
 255 study to assess reading speed ²⁵, the present study is the first to measure task-based

256 performance in two active vision tasks (face recognition and natural action) in realistic
257 conditions with the simulation of an approaching face and the handling of real objects to
258 execute a succession of actions.

259 Overall, our results show that patients with LHON were impaired in the face
260 recognition task. Although most of them were able to recognize the gender of faces at a size
261 corresponding to a one-meter viewing distance, only five patients (including P8 and P9, the
262 two patients with a better binocular visual acuity) were able to recognize the gender at a
263 greater equivalent viewing distance. While recognition of gender can be based on coarse
264 information conveyed by low spatial frequencies,²⁶ recognition of facial expressions requires
265 a finer perception of facial features (e.g., a frown for angry, a smile for happy). Gender was
266 recognized at a greater distance than facial expressions by both controls and patients with a
267 better binocular visual acuity. Studies on normally sighted young individuals have shown that
268 the happy expression is dependent on low spatial frequencies²⁷ while other expressions such
269 as anger, fear and sadness require higher spatial frequencies and a closer distance to be
270 recognized.²⁸ In line with these studies, happy faces were recognized at a greater distance
271 (i.e., a smaller size) than the angry and neutral faces were in controls and in P8 with the
272 BCVA. The equivalent viewing distances observed for both gender and facial expressions in
273 our experiment replicate those found in a previous study²⁹ in normally sighted young and
274 older participants. The present results are consistent with the declarations of patients with
275 LHON in questionnaires. Around 45% of them report major difficulties in recognizing faces.
276 This study suggests that these difficulties are probably underestimated, as the recognition of
277 three facial expressions was severely impaired. Studies on ocular pathologies affecting the
278 macular region have documented issues in the recognition of faces and facial expressions^{18,}
279³⁰⁻³¹, and while age-related macular degeneration is a progressive disease in which patients
280 have time to adapt and develop cognitive strategies to compensate for vision loss, LHON is
281 associated with rapid central vision loss. Taylor et al.³² observed that people with dry macular
282 degeneration do not suffer from problems with face recognition until the disease is in its
283 advanced stage.

284 In everyday tasks, gaze is used actively to gather information for the control of
285 actions. Eye movements reflect an overt manifestation of the momentary deployment of
286 spatial attention in a scene.³³ Loss of central vision changes an individual's capacity to gather
287 relevant visual information. With central visual field loss, visually guided actions must be
288 mediated by peripheral vision in which spatial resolution is lower than in central vision. In the

289 natural action task used here, real objects were scattered over an area covering 60°. Patients
290 were significantly slower than controls in the pre-task, before the first reaching movement. As
291 the pre-task is used to identify and remember the spatial location of relevant objects, this
292 result indicates that the peripheral vision is less efficient than the central vision to
293 discriminate relevant from irrelevant objects. Patients were on average 35 sec slower than
294 controls in the working phase (making a sandwich and pouring water in a glass). Similar
295 durations were reported in a previous study on patients with age-related macular degeneration,
296 who were 30 sec slower than age-matched normally sighted controls.¹⁹ In this experiment,
297 the working phase was longer in patients with LHON than in controls partly because some of
298 them used tactile information to recognize the objects or grasped them to bring them closer to
299 their faces before executing the action. Although patients were slower than controls, they
300 managed to accomplish the task without mistakes. The longer scanpath and higher frequency
301 of saccades and fixations in patients than in controls likely reflect a dynamic strategy to
302 sample information that is needed for the execution of the task. The greater number of
303 saccades may also reflect gaze instability and the need to use peripheral vision and one or
304 several preferred retinal locations (PRLs) to compensate for the deficit. PRLs were not
305 measured in this study. Although patients with LHON were slower than normally sighted
306 individuals in accomplishing natural actions, they reported being able to perform daily life
307 activities efficiently in spite of their scotoma and low visual acuity. Our results are in line
308 with data from questionnaires indicating that cooking-related activities are the least impacted
309 by the pathology with only 11.8% of patients reporting major difficulties and 21.3% reporting
310 moderate ones, compared to 85% for reading.⁸⁻⁹

311

312 **Limitations**

313 The major limitation of this study is its small number of patients. However, LHON is a rare
314 disease affecting about 1/50,000 persons in European countries. Nine patients were excluded
315 owing to poor BCVA (< 1/40). Individuals with central visual field loss often use one or
316 several PRLs depending on the task.³⁴ However, we did not measure them. In a single case
317 study on a patient with Stargardt disease (a pathology causing bilateral central scotoma),
318 Sullivan et al.³⁵ showed that a well-defined preferred retinal locus (PRL) is not necessary to
319 perform natural action tasks adequately.

320

321 **Conclusion**

322 While limited in scope owing to its small sample, this study provides interesting insights into
323 understanding active vision in patients with LHON. It shows that patients with dense bilateral
324 central scotoma are able to accomplish a daily life natural action using their peripheral vision.
325 However, they are strongly impaired in face recognition, which relies on central vision.³⁶

326
327
328
329

References

- 330 1. Man PYW, Griffiths PG, Brown DT, et al. The epidemiology of Leber hereditary optic
331 neuropathy in the North East of England. *Am J Hum Genet.* 2003;72(2):333-339.
332 doi:10.1086/346066
- 333 2. Puomila A, Hämäläinen P, Kivioja S, et al. Epidemiology and penetrance of Leber
334 hereditary optic neuropathy in Finland. *Eur J Hum Genet.* 2007;15(10):1079-1089.
335 doi:10.1038/sj.ejhg.5201828
- 336 3. Bocquet B, Lacroux A, Surget MO, et al. Relative Frequencies of Inherited Retinal
337 Dystrophies and Optic Neuropathies in Southern France: Assessment of 21-year Data
338 Management. *Ophthalmic Epidemiology.* 2013;20(1):13-25.
339 doi:10.3109/09286586.2012.737890
- 340 4. Rosenberg T, Nørby S, Schwartz M, et al. Prevalence and Genetics of Leber Hereditary
341 Optic Neuropathy in the Danish Population. *Invest Ophthalmol Vis Sci.* 2016;57(3):1370-
342 1375. doi:10.1167/iovs.15-18306
- 343 5. Yu-Wai-Man P, Chinnery PF. Leber Hereditary Optic Neuropathy. In: Adam MP, Feldman
344 J, Mirzaa GM, et al., eds. *GeneReviews®.* University of Washington, Seattle; 1993.
345 Accessed December 4, 2023. <http://www.ncbi.nlm.nih.gov/books/NBK1174/>
- 346 6. Nikoskelainen EK, Huoponen K, Juvonen V, et al. Ophthalmologic findings in Leber
347 hereditary optic neuropathy with special reference to mtDNA mutations. *Ophthalmology.*
348 1996;103(3):504-514.
- 349 7. Yu-Wai-Man P, Griffiths PG, Hudson G, et al. Inherited mitochondrial optic neuropathies.
350 *Journal of Medical Genetics.* 2009;46(3):145-158. doi:10.1136/jmg.2007.054270
- 351 8. Kirkman MA, Korsten A, Leonhardt M, et al. Quality of life in patients with Leber
352 hereditary optic neuropathy. *Invest Ophthalmol Vis Sci.* 2009;50:3112-3115.
- 353 9. Cui S, Jiang H, Peng J, et al. Evaluation of vision-related quality of life in chinese patients
354 with Leber hereditary optic neuropathy and the G11778a mutation. *J Neuro-Ophthalmol.*
355 2019;39:56-59 doi: 10.1097/WNO.0000000000000644
- 356 10. Oruc I, Balas B, Landy MS. Face perception: A brief journey through recent discoveries
357 and current directions. *Vision Res.* 2019;157:1-9. doi: 10.1016/j.visres.2019.06.005.

360 11. Corrow SL, Dalrymple KA, Barton JJs. Prosopagnosia: current perspectives. *Eye Brain*.
361 2016;8:165-175. doi: 10.2147/EB.S92838.

362 12. Albonico A, Barton J. Progress in perceptual research: the case of prosopagnosia.
363 *F1000Res*. 2019 May 31;8:F1000 Faculty Rev-765. doi: 10.12688/f1000research.18492.1.
364 eCollection 2019.

365 13. Taylor DJ, Hobby AE, Binns AM, et al. How does age-related macular degeneration
366 affect real-world visual ability and quality of life? A systematic review. *BMJ Open*.
367 2016;6:e011504. doi:10.1136/bmjopen-2016-011504
368

369 14. Lane J, Rohan EMF, Sabeti F, et al. Impacts of impaired face perception on social
370 interactions and quality of life in age-related macular degeneration: A qualitative study and
371 new community resources. *PLoS One*. 2018;13(12):e0209218. doi:
372 10.1371/journal.pone.0209218.

373 15. Boucart M, Despretz P, Hladiuk K, et al. Does context or color improve object recognition
374 in patients with low vision? *Vis Neurosci*. 2008a;25(5-6):685-691. doi:
375 10.1017/S0952523808080826.

376 16. Vottonen P, Kaarniranta K, Pääkkönen A, et al. Visual processing in patients with age-
377 related macular degeneration performing a face detection test. *Clin Ophthalmol*. 2017;
378 11:1245-1252. doi: 10.2147/OPTH.S132583.

379 17. Mitchell J, Bradley C. Quality of life in age-related macular degeneration: a review of the
380 literature. *Health Qual Life Outcomes*. 2006;4:97. doi: 10.1186/1477-7525-4-97.

381 18. Boucart M, Dinon JF, Despretz P, et al. Recognition of facial emotion in low vision: a
382 flexible usage of facial features. *Vis Neurosci*. 2008b;25(4):603-609. doi:
383 10.1017/S0952523808080656.

384 19. Boucart M, Delerue C, Thibaut M, et al. Impact of Wet Macular Degeneration on the
385 Execution of Natural Actions. *Invest Ophthalmol Vis Sci*. 2015;56(11):6832-6838. doi:
386 10.1167/iovs.15-16758.

387 20. Thibaut M, Tran TH, Delerue C, Boucart M. Misidentifying a tennis racket as keys: object
388 identification in people with age-related macular degeneration. *Ophthalmic Physiol Opt*.
389 2015;35(3):336-344. doi: 10.1111/opo.12201.

390 21. Thibaut M, Boucart M, Tran THC. Object search in neovascular age-related macular
391 degeneration: the crowding effect. *Clin Exp Optom*. 2020; 103(5):648-655. doi:
392 10.1111/cxo.12982.

393 22. Pardhan S, Gonzalez-Alvarez C, Subramanian A, et al. How do flanking objects affect
394 reaching and grasping behavior in participants with macular disorders? *Invest Ophthalmol
395 Vis Sci*. 2012;53(10):6687-6694. doi: 10.1167/iovs.12-9821.

396 23. Timberlake GT, Omoscharka E, Quaney BM, et al. Effect of bilateral macular scotomas
397 from age-related macular degeneration on reach-to-grasp hand movement. *Invest*
398 *Ophthalmol Vis Sci.* 2011;52(5):2540-2550. doi: 10.1167/iovs.10-6062.

399 24. Tottenham, N., Tanaka, J.W., Leon A, et al. The NimStim set of facial expressions:
400 Judgments from untrained research participants. *Psychiatry Res.* 2009;168(3), 242–249.
401 doi: 10.1016/j.psychres.2008.05.006

402 25. Altpeter EK, Blanke BR, Leo-Kottler B, et al. Evaluation of Fixation Pattern and Reading
403 Ability in Patients With Leber Hereditary Optic Neuropathy. *J Neuro-Ophthalmol.*
404 2013;33:344–348 doi: 10.1097/WNO.0b013e31829d1f5b

405

406 26. Goffaux V, Jemel B, Jacques C, et al. ERP evidence for task modulations on face
407 perceptual processing at different spatial scales. *Cog Sci.* 2003; 27:313-325.

408

409 27. Sowden PT, Schyns PG. Channel surfing in the visual brain. *Trends Cogn Sci.*
410 2006;10(12):538-545. doi: 10.1016/j.tics.2006.10.007.

411 28. Smith FW, Schyns PG. Smile through your fear and sadness: transmitting and identifying
412 facial expression signals over a range of viewing distances. *Psychol Sci.*
413 2009;20(10):1202-1208. doi: 10.1111/j.1467-9280.2009.02427.

414 29. Schafer A, Rouland JF, Carole Peyrin C, et al. Glaucoma Affects Viewing Distance for
415 Recognition of Sex and Facial Expression. *Invest Ophthalmol Vis Sci* 2018; 59(12):4921-
416 4928. doi: 10.1167/iovs.18-24875.

417 30. Bullimore MA, Bailey IL, Wacker RT. Face recognition in age-related maculopathy
418 *Invest Ophthalmol Vis Sci* 1991;32(7):2020-2029.

419 31. Tejeria L, Harper RA, Artes PH, et al. Face recognition in age related macular
420 degeneration: perceived disability, measured disability, and performance with a bioptic
421 device. *Br J Ophthalmol.* 2002;86(9):1019-1026. doi: 10.1136/bjo.86.9.1019.

422 32. Taylor DJ, Smith ND, Binns AM, et al. The effect of non-neovascular age-related
423 macular degeneration on face recognition performance. *Graefes Arch Clin Exp*
424 *Ophthalmol.* 2018;256(4):815-821. doi: 10.1007/s00417-017-3879-3.

425 33. Hayhoe M, Ballard D. Eye movements in natural behavior. *Trends Cogn Sci.*
426 2005;9(4):188-194. doi: 10.1016/j.tics.2005.02.009.

427 34. Crossland MD, Engel SA, Legge GE. The preferred retinal locus in macular disease:
428 toward a consensus definition. *Retina* 2011; 31: 2109–2114. doi:
429 10.1097/IAE.0b013e31820d3fba

430

431 35. Sullivan B, Jovancevic-Misic J, Hayhoe M, et al. Use of multiple preferred retinal loci in
432 Stargardt's disease during natural tasks: a case study. *Ophthalmic Physiol Opt.*
433 2008;28(2):168-177. doi: 10.1111/j.1475-1313.2008.00546.x.

434 36. Levy I, Hasson U, Avidan G, et al. Center-periphery organization of human object areas.
435 Nat Neurosci. 2001;4(5):533-539. doi: 10.1038/87490.

436