

Journal Pre-proof

Long term adult visual plasticity after the developmental critical period in genetically determined *peripheral* visual loss

Otilia C. d'Almeida, Joana M. Sampaio, Sonia Ferreira, Eduardo D. Silva, Miguel Castelo-Branco

PII: S2405-8440(25)00350-0

DOI: <https://doi.org/10.1016/j.heliyon.2025.e41970>

Reference: HLY 41970

To appear in: HELIYON

Received Date: 30 June 2024

Revised Date: 14 December 2024

Accepted Date: 13 January 2025

Please cite this article as: O.C. d'Almeida, J.M. Sampaio, S. Ferreira, E.D. Silva, M. Castelo-Branco, Long term adult visual plasticity after the developmental critical period in genetically determined *peripheral* visual loss, HELIYON, <https://doi.org/10.1016/j.heliyon.2025.e41970>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Ltd.

1 Long term adult visual plasticity after the developmental critical period in genetically determined 2 *peripheral visual loss*

3 **Short title: Visual Plasticity in genetic visual loss**

4 Otília C. d'Almeida^{a,b}, Joana M. Sampaio^a, Sonia Ferreira^a, Eduardo D. Silva^a, Miguel Castelo-Branco^{a,b,c,*}

5

⁶ ^a Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for
⁷ Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal

⁸ ^b Univ Coimbra, Faculty of Medicine, Coimbra, Portugal

⁹ ^c Univ Maastricht, Faculty of Psychology, Maastricht, The Netherlands

10

11

12 *Corresponding author:

13 Professor Miguel Castelo-Branco, MD PhD
14 ICNAS – Institute of Nuclear Sciences Applied to Health
15 Pólo das Ciências da Saúde, Universidade de Coimbra
16 Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
17 Phone: +351 239 488510
18 **E-mail:** mcbranco@fmed.uc.pt

20 Otília C. d'Almeida: E-mail: oalmeida@fmed.uc.pt

21

22

23

24

25

27 **Abstract**

28 Adult neural plasticity within the visual system remains controversial. Starkly opposing views still remain on the
29 ability of the visual system to reorganize in adulthood. Most attempts have focused on testing reorganization upon
30 central visual loss. However, central loss triggers immediate adaptive strategies such as the emergence of new
31 retinal preferential fixation loci, which may preclude plasticity. Moreover, plasticity may be further reduced in
32 later ageing periods. Here we addressed this issue by studying visual plasticity in a genetically determined retinal
33 disorder, Retinitis Pigmentosa, in which *peripheral* visual loss emerges not long after the critical period, in teenage
34 years. **We performed a case-control study with one-to-one matching and used an artificial scotoma**
35 **approach which carefully simulated the defective visual field of each RP patient on a normal-sighted**
36 **control. We used as outcomes population receptive field measures to probe long-term plasticity using fMRI**
37 **retinotopy.** We found evidence for reorganization based on **pRF size metrics and explained variance of**
38 **reorganized visual field maps.** In sum, visual cortical plasticity triggered by peripheral visual loss occurs beyond
39 the critical period of visual maturation.

40

41 **Keywords**

42 Population receptive fields; plasticity; visual loss; retinitis pigmentosa; scotoma; MRI

43

44 **Abbreviations**

45 V1: primary visual area; RP: Retinitis Pigmentosa; pRF: population receptive field; FULL: full-field control,

46 SCOT: artificial scotoma control

47 **1. Introduction**

48 The brain is continuously challenged by changes in visual experience. These may lead to short-term or even long-
49 term reorganization and distinct forms of neuroplasticity [1]. Neuroplasticity is an umbrella term describing long-
50 term functional and/or structural changes within the brain. Accordingly, the nervous system is able to adapt itself
51 by modulating its neural activity and subsequently reorganizing its functions and/or micro- and macrostructure
52 triggered by external or internal stimuli. However, beyond the critical windows of development, during which the
53 brain has an innate ability to reorganize itself functionally and/or anatomically, neural plasticity is a particularly
54 controversial phenomenon [2].

55 This is the case for low level visual cortical regions (for a review see Castaldi et al., 2020), both in animals and
56 humans, especially after the critical period. Several approaches have been proposed to provide quantitative
57 markers of cortical plasticity in humans, such as ocular dominance changes following brief periods of monocular
58 deprivation, assessed by binocular rivalry paradigms [4] and pupillometry [5], visual evoked potentials [6], and
59 measures derived from BOLD-fMRI [7,8].

60 The visually impaired brain provides a unique opportunity to investigate the mechanisms of neural plasticity in
61 the adult. Since early visual cortex has a retinotopic and hierarchical architecture, that is set from early childhood
62 [9,10], neural visual population receptive field (pRF) properties may represent objective indicators of cortical
63 organization [11], as pRF mapping is a valuable asset to evaluate visual map topology independently from
64 subjective perception [12]. Recent techniques allow to estimate more fine-scaled properties of pRFs, namely their
65 position and size along visual areas [13–15].

66 Prior animal studies found enlarged pRF sizes and shifts in retinal topography after inducing retinal and cortical
67 lesions in adult cats and monkeys suggestive of neuroplasticity [16]. On the other hand, some authors found no
68 evidence for primary visual area (V1) reorganization after binocular retinal lesions on macaques within 7.5
69 months, evaluated by fMRI and corroborated by electrophysiology measurements [17]. These inconsistencies [2]
70 render the controversy in human studies even more intriguing.

71 Retinitis Pigmentosa (RP) is a genetically-determined retinal disease characterized by photoreceptor loss in which
72 age of clinical onset is usually well after the critical period (in teenage years and beyond) and prior to age-related
73 changes [18,19]. With the course of the disease, regions of visual loss (scotomas) appear in the periphery. If

74 therapeutic solutions emerge, it is of utmost importance to understand how they will interact with potential cortical
75 plasticity. Here we directly asked if signatures of adult plasticity are present in RP by investigating **the dichotomy**
76 **of stability vs. plasticity** of pRF sizes in early visual areas. Often these two concepts have been used
77 interchangeably, yet some subtle differences should be considered, mostly related to the temporal scale of the
78 cause/effect events and their reversibility [2]. To disentangle between long-term plasticity and short-term
79 adaptation, we designed a one-to-one matched case-control approach by artificially simulating the defective visual
80 field of each RP patient on a normal-vision control while measuring pRFs. Such artificial scotoma approach is
81 considered to be the ideal approach to separate short-term effects from true plasticity [20,21]. If plasticity is absent,
82 similar pRF size patterns should be found in RP and matched controls.

83

84

85 **2. Materials and methods**86 *2.1. Participants*

87 A total of 37 participants belonging to three independent groups enrolled in this experiment (Table 1): the Retinitis
88 Pigmentosa (RP) group, included 12 patients recruited in collaboration with the Ophthalmology Unit, Coimbra
89 Hospital and University Centre, Portugal; the full-field control group (FULL), included 13 normally sighted
90 participants that performed the original protocol (as the RP group); and the artificial scotoma control group
91 (SCOT), an independent control group including 12 normally sighted participants submitted to an artificially-
92 simulated scotoma fMRI experiment (more details below). All 25 control participants were recruited from a
93 volunteers' database. **The sample size was based on previous studies [12,22–24] and is actually one of the**
94 **largest in the literature.** The study was approved by the Ethics Commission of the Faculty of Medicine,
95 University of Coimbra, and was conducted in accordance with the Declaration of Helsinki. Written informed
96 consent was obtained from all participants after all procedures were explained.

97 A general ophthalmological screening was performed including visual acuity assessment, frequency-domain
98 Cirrus Optical Coherence Tomography (OCT, software version 5.1.1.6, Carl Zeiss Meditec AG, USA) to estimate
99 retinal fiber layer and average retinal thickness, and standardized static visual field perimetry (MonCv3
100 multifunction perimeter, Metrovision, France), **as described in [22].** The latter allowed not only to evaluate the

101 extent of visual field damage (mean deficit and visual field diameter), estimated from the sensitivity values (dB)
 102 of each visual area position tested, but also to obtain visual field sensitivity maps to be used in the artificial
 103 scotoma experiment.

104 Exclusion criteria included visual field diameter smaller than 5° and/or visual acuity lower than 0.2 in both eyes
 105 that would result in fixation difficulties during visual examinations and fMRI acquisitions.

106

	RP	FULL	SCOT	Statistics
N	12	13	12	
Age (y)	33.9±8.31	33.2±9.80	34.0±7.02	$F_{(2,34)}=0.04, p=0.963$
Sex (Male:Female)	9:3	9:4	9:3	$\chi^2=0.142, p=0.931$
Selected eye (Left:Right)	5:7	5:8	5:7	$\chi^2=0.036, p=0.982$
Disease duration (y)	21.3±10.25	-	-	-
Visual Acuity^a (logMAR)	0.2±0.11	0.0±0.07	0.0±0.06	H=24.8, p<0.001^b
Visual Angle ^a (diameter, deg)	17.1±13.84	49.8±4.51	54.0±6.27	H=27.6, p<0.001^b
Mean Deficit ^a (dB)	17.4±6.60	0.1±0.40	0.5±0.91	H=23.5, p<0.001^b
Retinal Thickness ^a (μm)	239.0±23.30	285.5±14.23	285.6±7.70	F_(2,34)=32.9, p<0.001^b
RNFL Thickness ^a (μm)	107.0±15.23	95.3±10.53	95.5±10.90	F_(2,34)=3.6, p=0.039^c

107 RNFL, Retinal nerve fiber layer

108 Quantitative data is presented as mean±SD and qualitative data as frequencies

109 ^a Mean of left and right eye values

110 ^b Pairwise post-hoc tests (Bonferroni corrected) showed statistical differences between RP and both control groups

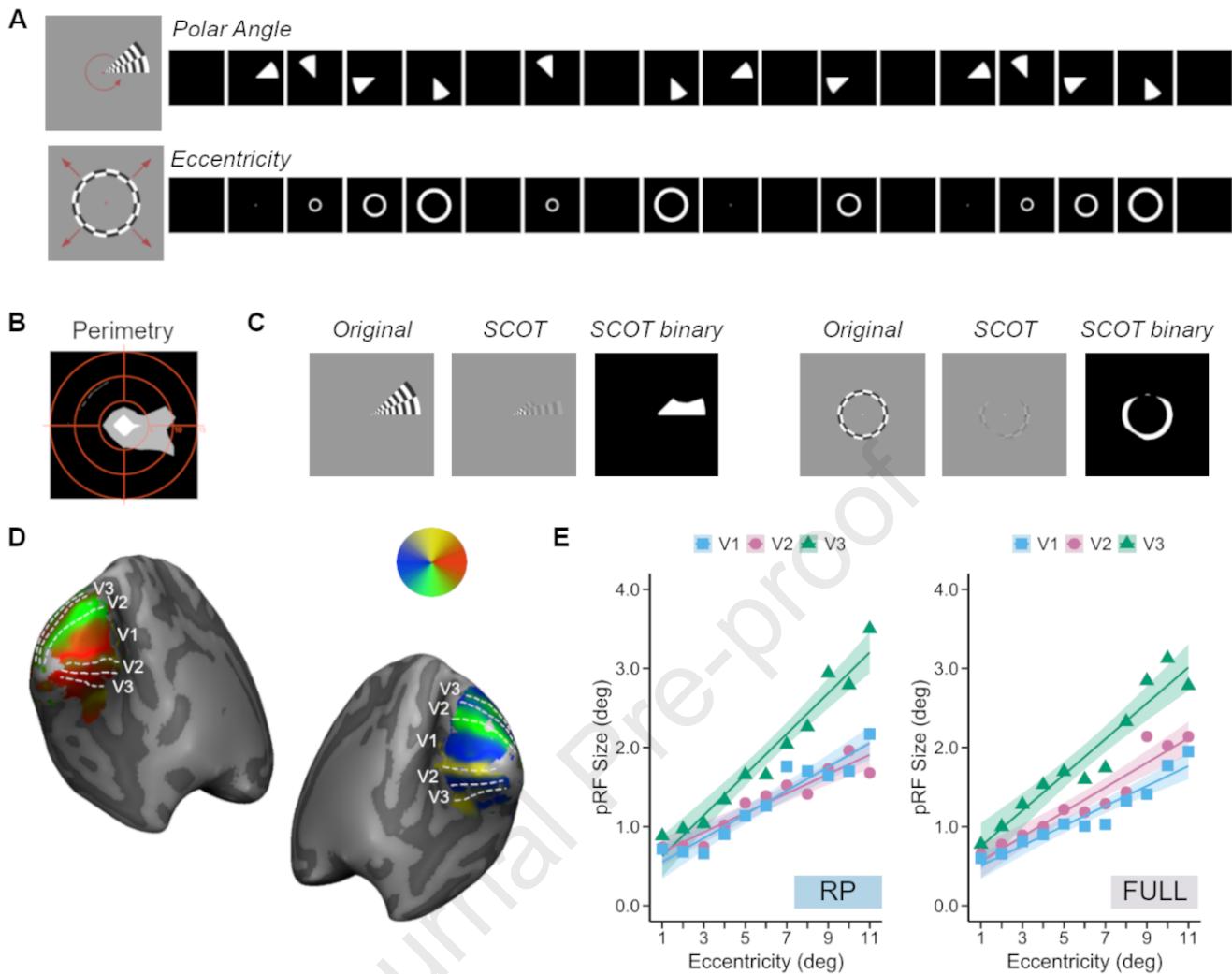
111 ^c Pairwise post-hoc tests (Bonferroni corrected) showed no pairwise statistical differences between groups

112 **Table 1.** Clinical-demographic data of the three cohorts: Retinitis Pigmentosa (RP), the full-field control (FULL),
 113 and the artificial scotoma control (SCOT) groups. Statistical significance value (p-value) refers to the
 114 comparisons accross the three groups.

115

116 *2.2. MRI data acquisition and experimental design*

117 *2.2.1. Neuroimaging acquisition*


118 MRI data was acquired using a 3T Siemens Magnetom TrioTim scanner (Siemens AG, Germany) at the
 119 Portuguese Brain Imaging Network with a 12-channel birdcage head coil. The acquisition protocol consisted of
 120 two high-resolution T1-weighted 3D Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE)
 121 sequences and four functional MRI runs (two polar angle (PA) and two eccentricity (Ecc) stimuli, acquired in
 122 alternated runs, PA-Ecc-PA-Ecc). The acquisition parameters were as following: MPRAGE, 176 slices with 1 mm

123 isotropic voxel, repetition time/echo time (TR/TE) 2530/3.42 ms, flip angle (FA) 7°, field of view (FoV) 256×256
124 mm²; fMRI runs, 26 slices using a single shot Echo-Planar Imaging sequence acquired in the axial plane parallel
125 to the anterior commissure-posterior commissure (AC-PC) plane with a 2 mm isotropic voxel, TR/TE 2000/39 ms,
126 interslice time (TI) 76 ms, FA 90°, FOV 256×256 mm², 128×128 imaging matrix, **108 volumes per run**. All
127 anatomical data was inspected by a neuroradiologist to exclude potential structural alterations. MRI-compatible
128 goggles with refractive correction (VisualSystem, NordicNeurolab, Norway) were used to present the retinotopy
129 stimuli. The experimental procedure was performed monocularly using the dominant eye, determined using the
130 Dolman hole-in-the-card test, except if it had the lowest visual acuity, to reduce discomfort during the acquisition.
131 The non-stimulated eye was covered with a cotton patch. Fixation was monitored synchronously during the
132 acquisition by the operator with an eye-tracker device (EyeTracking Camera, NordicNeurolab, Norway).

133

134 *2.2.2. Experimental design*

135 The stimuli and experimental design for fMRI paradigms were developed using MATLAB (R2011b, The
136 MathWorks, USA) and Psychophysics Toolbox 3 extensions for MATLAB (<http://psychtoolbox.org/>).
137 In MRI, the maximum field of view was 23°×30°. The stimuli (Fig. 1A) used for population receptive field (pRF)
138 estimation consisted in conventional single 45° counter-clockwise rotating wedge (polar angle) and expanding
139 ring (eccentricity) with a high-contrast (~100%) flickering (8Hz) checkerboard pattern in agreement to standard
140 retinotopic paradigms first described by Sereno et al. (1995). Both stimuli moved across the visual field in 24
141 discrete steps, 2s in each position spanning all area within 48s. Each run had a 12s initial fixation block (6 TR) of
142 mean luminance with zero contrast (~20 cd/m²) and 12s mean luminance blocks of zero contrast inserted within
143 the two middle cycles replacing the stimuli in 6 consecutive TR to estimate population receptive fields with the
144 modelling method described by Dumoulin and Wandell [13]. The order of the insertion of mean luminance blocks
145 is depicted in Fig. 1A (as binary stimulus frames). The participants were asked to keep fixation in a central red
146 cross with 0.78° of diameter.

147

148 **Fig. 1.** Population receptive field (pRF) mapping. **(A)** Modified versions of standard retinotopy experiments of
 149 the polar angle (rotating wedge) and eccentricity (expanding ring) stimuli were used, including the insertion of
 150 mean luminance periods replacing different positions of the retinotopy stimulus. Protocols of each run are
 151 presented as binary frames (each 12s frame, 6×TR). **(B)** Visual field perimetry data of retinitis pigmentosa (RP)
 152 patients were collected to create artificial scotoma masks. In the representative perimetry map, black-to-white
 153 represents lower-to-higher sensitivity areas, and concentric rings mark 5°, 10° and 15° (radius) from the center. A
 154 low-pass filter was used to get smooth transitions along the sensitivity maps. **(C)** Controls from the artificial
 155 scotoma group (SCOT) were submitted to a modified version of the original stimuli by applying a mask based on
 156 the perimetry data of the matched RP patient (as a strategy to simulate the visual field perception of the patient).
 157 When creating the binary masks for pRF estimation, all visible areas were considered as a stimulated region
 158 (white). **(D)** Early visual areas, V1, V2, and V3, were manually defined according to individual functional polar

159 angle maps overlaid on inflated meshes of the left and right hemispheres (representative data). (E) Linear
160 regression lines were adjusted for the average pRF size (deg) in each 1° equally spaced eccentricity bin (Bin 1,
161 0.5°-1.5°; Bin 11, 10.5°-11.5°) in each visual area: V1 (blue circles), V2 (pink squares) and V3 (green triangles)
162 for the full-field controls with normal vision (FULL) and Retinitis Pigmentosa (RP) groups. Shaded areas
163 represent 95% confidence bands of best-fit regression lines for each visual area.

164

165 *2.2.3. Artificial Scotoma stimuli*

166 To resolve chronic from acute adaptive effects we performed a matched case-control artificial scotoma experiment
167 (Fig. 1C), by adapting the original retinotopy stimulus and presenting it to an independent control group (SCOT).
168 Each SCOT participant was age- and sex-matched to a RP patient (Table 2). In the MRI, the SCOT participant
169 was presented to a polar angle and an eccentricity stimulus masked by the perimetry visual field sensitivity map
170 of the corresponding RP patient (Fig. 1B). A circular averaging filter was applied to create a soft blur based on
171 the field deficit preventing sharp borders (Fig. 1C).

ID	Subgroup	Age (y)	Sex	Handedness	Stimulated Eye	Visual angle ^a (deg)	Onset age (y)	Disease Duration (y)
RP1	RP	19	M	R	L	14.5	7	12
RP2	RP	23	M	R	R	8.5	16	7
RP3	RP	24	M	R	R	43.0	14	10
RP4	RP	31	M	R	L	47.5	2	29
RP5	RP	34	F	R	R	15.5	3	31
RP6	RP	35	M	R	L	9.5	6	29
RP7	USH	34	F	R	R	9.0	14	20
RP8	RP	37	F	R	L	21.5	32	5
RP9	RP	41	M	R	L	8.0	18	23
RP10	USH	42	M	R	R	9.0	14	28
RP11	USH	44	M	R	R	7.5	18	26
RP12	USH	43	M	R	R	13.0	8	35
SCOT 1		24	M	R	L	60.0		
SCOT 2		25	M	R	R	60.0		
SCOT 3		27	M	R	R	48.0		
SCOT 4		28	M	R	L	60.0		
SCOT 5		31	F	R	R	48.0		
SCOT 6		34	F	R	R	48.0		
SCOT 7		34	M	R	L	60.0		
SCOT 8		39	F	L	L	60.0		
SCOT 9		39	M	R	L	48.0		
SCOT 10		40	M	R	R	48.0		
SCOT 11		43	M	L	R	60.0		
SCOT 12		44	M	R	R	48.0		

173 *F*, female; *L*, left; *M*, male; *R*, right; *USH*, Usher Syndrome

174 ^a Visual angle diameter (deg) of the eye opened during fMRI

175 **Table 2.** Summary of the individual clinical-demographic characterization for all the participants from the
176 Retinitis Pigmentosa (RP) and the artificial scotoma (SCOT) control groups.

177

178 *2.3. fMRI data processing and analysis*

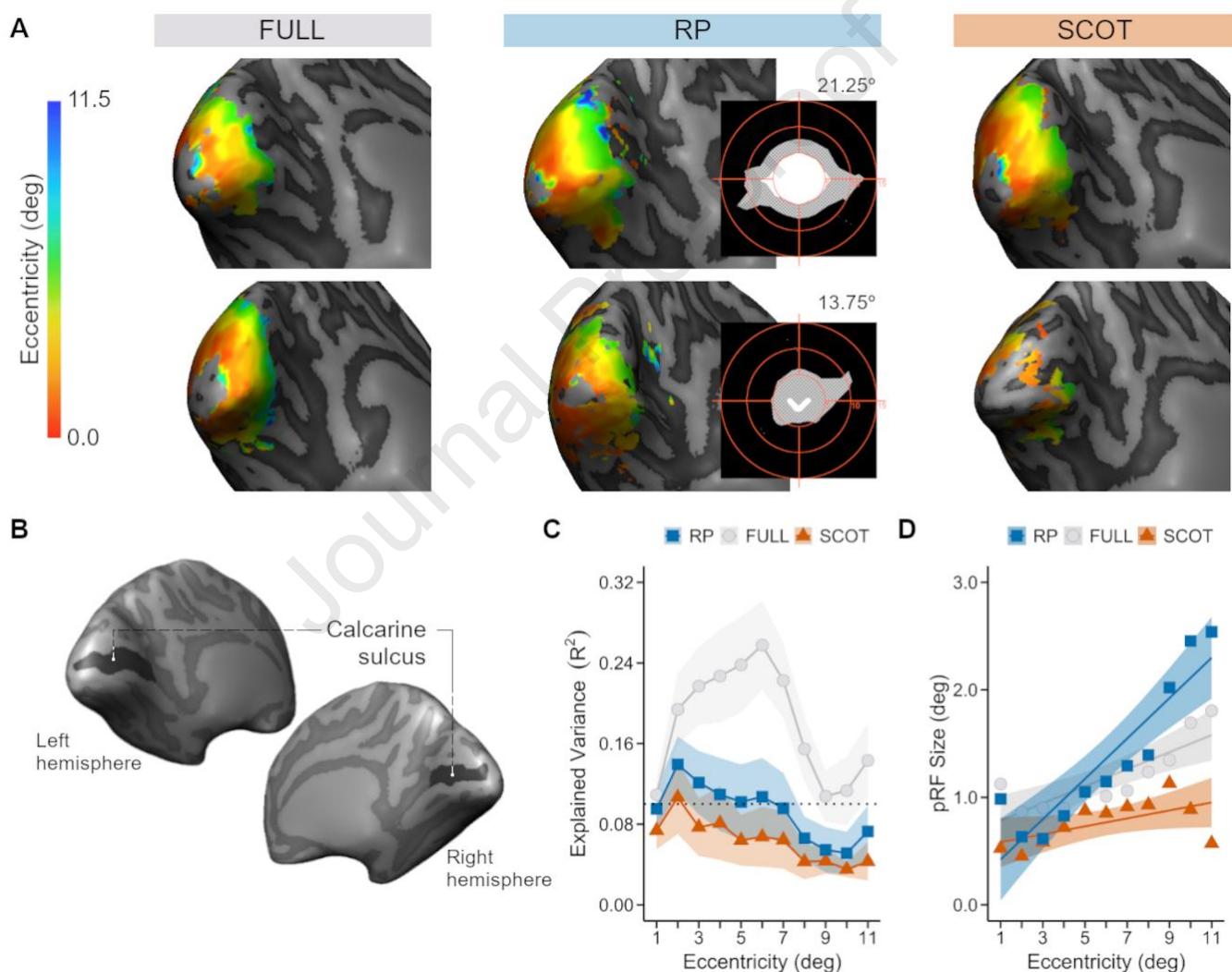
179 *2.3.1. MRI data pre-processing*

180 All MRI data were preprocessed and analyzed using BrainVoyager . Each anatomical dataset was skull-stripped
181 and corrected for intensity inhomogeneities, and then averaged to improve the signal-to-noise ratio. The resulting
182 volumes were re-oriented to the AC-PC plane and normalized to Talairach coordinate space. An automatic
183 segmentation routine was applied to separate gray and white matter and then to create 3D triangular mesh

184 representations of each hemisphere. To project the functional maps in a fully exposed cortical surface, each
 185 reconstructed and morphed hemisphere was inflated.

186 Each fMRI dataset was pre-processed with mean intensity correction, slice scan time correction (trilinear/sinc
 187 interpolation), rigid-body 3D interscan motion correction, and temporal high-pass filtering (2 cycles per run).
 188 Runs with motion parameters' estimates higher than 3 mm translation or 3° rotation in any direction were
 189 discarded from analysis. Only the first eccentricity run of an RP participant was excluded. Due to the use of
 190 preparation scans, none of the initial volumes needed to be discarded to account for early magnetization transients.
 191 All preprocessed functional runs were coregistered to the Talairach anatomical images and pRF estimation was
 192 performed in surface space directly.

193


194 *2.3.2. Retinotopic mapping and pRF estimation*

195 To estimate the size of the pRF and obtain eccentricity and polar angle maps we used the Dumoulin and Wandell
 196 model-driven approach [13] implemented in BrainVoyager. Accordingly, the pRFs response was described by a
 197 2D gaussian [26] with three free parameters, the positions x and y, and the spread/standard deviation (pRF size).
 198 Stimuli frames were binarized by eliminating the checkerboard pattern (Fig. 1C) and downsampled to 300×300
 199 px. In the SCOT group, only areas of absolute scotoma (sensitivity below 10 dB) were set in black, and all visible
 200 area was considered as a stimulated region (white). To calculate the optimal pRF parameters, a grid-search
 201 approach was used to estimate 27000 candidate configurations (30×30, x and y positions, extending from -11.5°
 202 to 11.5° within a 23°×23° visual field). The pRF sizes were assumed to vary with increasing spreads from 0.2° to
 203 7.1° in 30 equal steps. The estimation was restricted to the posterior region encompassing the occipital lobe. The
 204 explained variance (R^2) was used as a quantitative measure of the goodness-of-fit of the fMRI pRF modeling. **To**
 205 **reduce the influence of noisy vertices, pRF sizes were extracted only from voxels with $R^2 \geq 10\%$.**

206 It is known that retinotopic areas V1, V2 and V3 can be defined relative to the vertical and horizontal meridians
 207 in a mirror/non-mirror configuration. We therefore overlaid the polar angle map over the individual 3D meshes
 208 of each hemisphere and manually defined these regions-of-interest (ROIs) using BrainVoyager's surface drawing
 209 tools (Fig. 1D).

210 Mean pRF size was estimated as the average of all vertices inside each functionally defined low-level visual areas
 211 V1, V2, and V3, for each eccentricity bin. Eccentricity bins were defined each 1° ranging from 0.5° (bin 1, 0.5° -
 212 1.5°) to 11.5° (bin 11, 10.5° - 11.5°). Some participants had missing data in some bins due to the application of
 213 outlier quality criteria. Additionally, calcarine sulcus was manually drawn from anatomical curvature maps for all
 214 cases as a proxy of primary visual area, V1 (Fig. 2B), since the low pRF fMRI signal of several artificial scotoma
 215 control (SCOT) participants prevented the functional definition of V1, V2 and V3 (Fig. 2A).

216

217

218 **Fig. 2. Illustrative eccentricity functional maps of six participants and evaluation of the model fitting along**
 219 **the calcarine sulcus as an approximation of V1. (A)** Eccentricity (deg) maps of the left hemisphere of matched
 220 participants (rows) of the three groups: full-field control (FULL), Retinitis Pigmentosa (RP), and artificial scotoma

221 control (SCOT), overlaid over inflated meshes. Perimetric visual field maps of the left eye, with the respective
 222 mean visual angle diameter, of each RP patient are depicted in the insets, where each circle is positioned at 5°,
 223 10°, and 15° (radius) from the center (white to black regions correspond to high to low visual field sensitivity). At
 224 the bottom row, notice the residual signal in the SCOT participant, while the RP patient still exhibits a reduced
 225 but preserved signal in the presence of a small visual field. Smoothing in the cortical functional maps was used
 226 for visualization purposes only. **(B)** Calcarine sulcus (dark-grey) was anatomically defined based on the curvature
 227 maps over inflated left and right hemisphere meshes of each individual. **(C)** Mean explained variance (R^2) was
 228 used as a goodness-of-fit measure of the pRF model along equally spaced eccentricity bins (bin 1, 0.5°-1.5°; bin
 229 11, 10.5°-11.5°) in the anatomically defined calcarine sulcus of RP (blue squares), SCOT (orange triangles) and
 230 FULL (light grey circles) groups. Markers and shaded areas represent, mean R^2 and 95% confidence interval for
 231 each group. The dotted line at 10% marks the threshold set in the previous functional definition of the regions-of-
 232 interest in RP and FULL groups. **(D)** To evaluate the pRF size modulation along eccentricity in RP and SCOT
 233 groups, linear regression lines were adjusted and compared between groups. **In panel A, a threshold of $R=0.030$**
 234 **was applied to the functional maps.** Markers and shaded areas represent pRF size (deg) within each eccentricity
 235 bin and 95% confidence bands of best-fit regression lines for each group. See also Appendix, Fig. A.1.

236

237 2.4. Statistical analysis

238 Population receptive field maps features were retrieved with the MATLAB-based (MATLAB R2020a, v9.8.0,
 239 The MathWorks, USA) BVQXtools/NeuroElf (by Jochen Weber; <http://neuroelf.net/>) toolbox and in-house
 240 MATLAB scripts. ROIs were divided into eccentricity areas (bins) ranging from 0.5° to 11.5° in 1° steps
 241 (eccentricity bins). PRF sizes from each ROI of each hemisphere were extracted for each eccentricity bin. **Only**
 242 **vertices for which explained variance $R^2 \geq 10\%$ were further considered.** In analysis of explained variance,
 243 all not null values were considered.

244 Statistical analysis was performed using IBM SPSS Statistics for Windows, version 28 (IBM Corp., Armonk,
 245 N.Y., USA), otherwise stated. Qualitative variables were analyzed with χ^2 independence test. Linear regression
 246 fitting was applied for mean pRF size along eccentricity in each ROI of each group. Comparison of the slope and

247 y-intercept of regression lines for V1, V2 and V3 of RP and FULL groups was independently performed using
 248 Prism version 6.0.0 for Windows (GraphPad Software, La Jolla California, USA), using ANCOVA. GLM
 249 repeated measures ANOVA (rmANOVA) was used to compare the differences of mean R^2 values along
 250 eccentricity in anatomically defined calcarine sulcus (manually drawn from curvature maps) between RP, and
 251 both control groups (FULL and SCOT). When assumptions of sphericity were not met, the Huynh–Feldt ($\varepsilon >$
 252 0.75) or the Greenhouse–Geisser ($\varepsilon \leq 0.75$) corrections were selected. Bonferroni correction was used for post-
 253 hoc multiple comparisons testing. Partial eta-squared (η_p^2) was used to evaluate the effect size of the F -tests.
 254 Regression lines were fit to mean pRF sizes along eccentricity bins in the calcarine sulcus of each cohort and an
 255 ANCOVA was applied to compare slopes between RP and SCOT groups. **Exploratory correlation analysis**
 256 **between disease course and retinal indicators (age of disease onset, disease duration, and retinal and RNFL**
 257 **thickness) and summary measures of pRF size (mean pRF size, slope and y-intercept of the mean pRF size**
 258 **vs. eccentricity regression lines in V1, V2, V3 and calcarine sulcus) were also performed using Spearman's**
 259 **and Pearson correlation testing as appropriate.**
 260 All statistics are presented as the mean \pm SEM (standard error of the mean) or mean and 95% Confidence Interval,
 261 as appropriate. Two-tailed hypothesis testing was performed at 5% significance level.
 262
 263

264 **3. Results**

265 **In our study, three independent groups were considered: RP, the case group, including patients diagnosed**
 266 **with Retinitis Pigmentosa; FULL, a normal-vision control group, including subjects without RP submitted**
 267 **to the same fMRI stimulation protocol (full field) as RP; SCOT, an independent normally sighted control**
 268 **group that was presented with an adapted retinotopy paradigm, masking the scotoma region and**
 269 **simulating the functional visual field loss of an age- and gender-matched RP patient.**
 270

271 *3.1. Descriptive characterization of retinotopic organization*

272 In this section and before testing our main hypothesis in the next section we provide a description of retinotopic
 273 organization. Modified versions of the polar angle and eccentricity retinotopy paradigms (Fig. 1A) were used to
 274 functionally define early visual areas V1, V2 and V3 (Fig. 1D) and to estimate pRF sizes along eccentricity. Linear
 275 regression lines were adjusted to the mean pRF size values along eccentricity for each visual area in RP (Fig. 1E).
 276 An analysis of covariance (ANCOVA) on mean pRF size between visual areas V1-V3, having eccentricity as a
 277 covariate was performed to compare regression slopes. We found the expected significant interaction visual
 278 area×eccentricity ($F_{(2,642)} = 11.91, p = 8.00 \times 10^{-6}, \eta_p^2 = 0.04$) indicating a difference between regression line slopes.
 279 *Post hoc* tests showed statistically significant differences between V1 and V3 ($F_{(1,433)} = 12.10, p = 5.56 \times 10^{-4}, \eta_p^2$
 280 = 0.03) and V2 and V3 ($F_{(1,413)} = 26.91, p = 3.35 \times 10^{-7}, \eta_p^2 = 0.06$). Interestingly, there were no differences between
 281 either the slopes or regression line y-intercepts between V1 and V2.
 282 Analysis with people with normal vision, hereafter named FULL group, the evolution of the pRF sizes across
 283 visual areas V1, V2 and V3 and within these areas (along eccentricity) followed the expected pattern, with a
 284 significant difference between regression line slopes (area×eccentricity: $F_{(2,834)} = 10.79, p = 2.40 \times 10^{-5}, \eta_p^2 = 0.03$).
 285 *Post-hoc* analysis showed that between V1 and V2, slopes were not statistically different but the difference
 286 between the y-axis intercepts of V1 and V2 regression lines was statistically significant ($F_{(1,560)} = 9.20, p = 0.003,$
 287 $\eta_p^2 = 0.02$). Also, there was a statistically significant difference (*post-hoc*) between V3 and both V1 ($F_{(1,557)} =$
 288 $20.63, p = 7.00 \times 10^{-6}, \eta_p^2 = 0.04$) and V2 ($F_{(1,552)} = 9.58, p = 0.002, \eta_p^2 = 0.02$).
 291

292 *3.2. The nature of PRF organization along the calcarine sulcus in RP patients but not in artificial
 293 scotoma suggests long-term plasticity*

294 In this section we test the main hypothesis of our study. To simulate the perceived visual field of each RP patient,
 295 a matched control (SCOT) undergone fMRI scanning with a modified version of the original stimuli. Briefly, the
 296 polar angle and eccentricity stimuli was masked according to the visual field sensitivity map of the matching RP
 297 patient estimated by perimetry (Fig. 1B,C). The expected weak signal (Fig. 2A) in most of the SCOT participants
 298 (normally sighted controls with a simulated artificial scotoma), prevented a clear-cut functional definition of early
 299 visual areas. To circumvent this challenge posed by artificial scotomas, and to avoid bias, the calcarine sulcus was

300 anatomically delimited based on the curvature maps along primary visual area V1 (Fig. 2B). Explained variance
 301 (R^2) maps were used as a primary quantitative metric to evaluate the goodness-of-fit of the pRF signal [13].
 302 According to our hypothesis, a higher value than predicted by artificial scotomas after visual loss suggests more
 303 robustly preserved or improved retinotopic representations. If these values are larger in RP than in SCOT, this
 304 would indicate reorganization in the former. Mean R^2 (values > 0) in each 1° eccentricity bin along calcarine
 305 sulcus (Fig. 2C) were estimated for all participants (RP, FULL, SCOT).

306 A two-way rmANOVA was applied on R^2 mean values with eccentricity as a within-subjects factor and the group
 307 as between-subjects factor (Fig. 2C). A significant interaction eccentricity \times group was found ($GGF_{(12.2,415.2)} = 4.75$,
 308 $p = 2.18 \times 10^{-7}$, $\eta_p^2 = 0.12$). As expected, R^2 was, in general, significantly lower for RP when compared to the FULL
 309 group (except for the most central eccentricities, bins 1 and 2, Bonferroni corrected). Generally, R^2 was
 310 consistently lower in SCOT, and, supporting our hypothesis, higher in the RP and FULL groups. The main effect
 311 of group ($F_{(2.0,68.0)} = 26.70$, $p = 2.76 \times 10^{-9}$, $\eta_p^2 = 0.44$) was further supported by post-hoc analyses, with even
 312 stronger effects when removing the two SCOT participants matching RP patients with visual field diameter higher
 313 than 23° . This sensitivity analysis (Appendix, Fig. A.1) showed significant eccentricity \times group and group effects
 314 (interaction: $GGF_{(12.0,383.3)} = 5.74$, $p = 3.96 \times 10^{-9}$, $\eta_p^2 = 0.15$; group: $F_{(2.0,64.0)} = 38.15$, $p = 1.24 \times 10^{-11}$, $\eta_p^2 = 0.54$).
 315 Bonferroni-corrected post-hoc analysis disclosed significantly lower pRF sizes in SCOT group compared to RP
 316 for more central bins 2 and 3 (1.5° to 3.5°) and bin 7 (6.5° to 7.5°).

317 To further confirm this effect, since this study followed a one-to-one matched case-control (RP to SCOT)
 318 approach, a bin-wise sign test was applied, given that bins are paired for mean R^2 values of each patient and
 319 matched SCOT individuals (for each eccentricity of each hemisphere). The sign tests showed statistically
 320 significant differences between the two medians in most central eccentricities (0.5° - 1.5° , 2.5° - 7.5° , p -values
 321 ranging from <0.001 to 0.007) in which mean R^2 was, in general, lower for SCOT individuals, suggesting that
 322 “reorganization” cannot be explained by an artificial scotoma. Since two RP patients had perimetric visual angles
 323 larger than 23° , the matched SCOT individuals were presented with regular pRF mapping stimulus as resembling
 324 FULL participants, because of the preserved vision in those cases. This would possibly influence both R^2 and pRF
 325 size estimates and reduce real group differences, being more conservative. Sensitivity analyses (Appendix, Fig.

326 A.1) were further considered considering the level of visual preservation without the mentioned pairs. Sign tests
 327 showed significantly lower R^2 for SCOT individuals in all central areas (0.5° - 7.5° , p -values ranging from <0.001
 328 to 0.041) and 10.5° - 11.5° ($p = 0.041$).

329 To find an independent metric of reorganization, pRF sizes were averaged for each eccentricity bin along the
 330 calcarine sulcus for vertices with $R^2 > 0$. Analysis of the regression lines adjusted to the mean pRF size along
 331 eccentricity in the calcarine sulcus of RP and SCOT groups (Fig. 2D) showed a significant difference between
 332 slopes ($F_{(1,0,296,0)} = 15.01$, $p = 1.32 \times 10^{-4}$, $\eta_p^2 = 0.05$), suggesting that group differences amplify at larger
 333 eccentricities, as expected from the locus of reorganization. Slopes of the mean pRF size vs. eccentricity regression
 334 lines remained different between RP and SCOT groups ($F_{(1,0,254,0)} = 8.42$, $p = 0.004$, $\eta_p^2 = 0.03$), even when
 335 removing the two SCOT controls matching RP who had visual preservation beyond 23° .

336

337 **3.3. PRF size is not associated with disease course and retinal measures**

338 **Exploratory correlation analyses between each summary measures representing the pRF size (average pRF**
 339 **size, slope and y-intercept) in each ROI (calcarine sulcus, V1,V2 and V3) and disease duration and onset,**
 340 **and RNFL and retinal thickness of RP patients showed no statistically significant effects.**

341

342

345 **4. Discussion**

346 **We found** evidence for long-term residual functional neuroplasticity in adult visual cortex of Retinitis Pigmentosa
 347 patients, a genetic model of visual field loss after the critical period. This reconciles evidence from animal models
 348 that had remained difficult to demonstrate in humans.

349 In animal model studies direct manipulations of sensory input are implemented by inflicting circumscribed lesions
 350 at the retinal or cortical level. Pioneering research in adult cats and macaque monkeys evidenced that after retinal
 351 deafferentation, short-term functional adaptations occur adjacent to the cortical lesion projection zone in which
 352 ectopic receptive fields become significantly enlarged, even though having a weaker signal [27,28].

353 In humans, neuroplasticity research hinges on models of pathologic sensory deprivation or loss [8,29]. **Yet, the**
 354 identification of short-term changes does not necessarily imply plasticity. **In a study with RP patients, authors**
 355 **found evidence for a short-term adaptive processes using a monocular deprivation approach in a binocular**
 356 **rivalry task, in which patients with greater impairment presented stronger effects [30]. Another study using**
 357 **fMRI** phase-encoded retinotopic mapping showed that in primary visual cortex (V1) of RP patients, central retinal
 358 inputs were shifted towards the periphery (with lower retinal input), in the absence of cortical thickness changes,
 359 also suggestive of functional reorganization mechanisms [22]. Similar to the former [30] the degree of remapping
 360 was associated with the magnitude of the visual loss in which larger remapping could be related to smaller visual
 361 fields. However, no evidence for long-term changes and true plasticity could be shown.

362 In a seminal inaugural study with two macular degeneration patients, with extensive macular damage leading to
 363 loss of central vision, evidence for large-scale reorganization was found as peripheral visual field stimulation
 364 elicited BOLD activation at the occipital pole but not in normal-vision controls [31]. Remarkably, in a follow up
 365 study, the authors found that this neural reorganization is also dependent on the extension of the retinal lesion,
 366 evident only in the patient with total absence of foveal input [32]. On the other hand, in a study conducted by
 367 Baseler et al. (2011), no evidence for cortical remapping was found in a larger cohort of macular degeneration
 368 patients.

369 **The controversy underlying previous studies may relate to the difficulty in showing plasticity in central**
 370 **visual loss [11] because adaptive behavioral strategies (e.g. training new preferred fixation loci) may hinder**
 371 **neuronal reorganization processes, which should not be the case for peripheral lesions. The inconsistency**
 372 **of results on cortical neuroplasticity may also stem from other factors including clinical individual**
 373 **variability [33], as well as methodological heterogeneity such as study design, and the lack of clear**
 374 **indicators of plasticity.**

375 In our work, we found clear-cut evidence for long-term reorganization, while the general increase of pRF along
 376 eccentricity was observed both in Retinitis Pigmentosa and control individuals, as expected, being smaller in V1
 377 and higher in V3 [11]. Nonetheless, the question on the timescale of these mechanisms and if they indicate genuine
 378 plasticity remains unanswered, i.e., a putative remapping in the visual cortex of RP patients is a marker of ‘short
 379 term adaptation’ or ‘plasticity’?

380 We therefore manipulated the visual input to simulate the visual field of the patients by masking the stimulus
 381 according to VF perimetry, the so-called *artificial scotoma* approach, **framing a more adequate control to study**
 382 **pRF characteristics of patients [21]. This method intends to simulate a retinal lesion in normally sighted**
 383 **participants removing parts of the stimulus within the visual field [11,14,20,34]. In our sensitive one-to-one**
 384 **matching approach, each RP patient was age- and sex-matched to a normal sighted control participant that**
 385 **was presented with an adapted pRF stimuli based on the perceptual experience of the matched patient**
 386 **(using the perimetric visual field to simulate the retinal lesion).** By hypothesis, if fast adaptation occurs, the
 387 neuronal maps would swiftly reflect the recent lack of sensory input. However, if long-term neuroplasticity takes
 388 place, by hypothesis, a distinctly organized retinotopic signal would be, at least partially, present in the patients,
 389 in contrast with the artificial scotoma controls.

390 We found that, in general, RP patients showed evidence for a more organized visual map as compared to artificial
 391 scotoma which was contingent on the amount of visual field loss. Moreover, the pRF dependence on eccentricity
 392 also changed, suggesting larger peripheral pRFs in patients, as predicted by animal studies. Artificial scotoma
 393 pRF mapping excludes rapid adaptation and suggests instead long-term plasticity mechanisms.

394 Previous small sized studies in disorders not specifically affecting the photoreceptor layer such as choroidemia
 395 analyzed pRFs from a clinical point of view but not plasticity [35]. We [23] and others [24] had also investigated
 396 other factors such as attention mechanisms. One should also consider prior studies in central vision [31,32], but
 397 here we studied peripheral vision loss, where compensatory mechanisms that occur near the fovea, such as
 398 preferential fixation do not exist.

399 Some considerations must be considered when interpreting the results. **First**, to create the masks for the SCOT
 400 group, we used standardized static visual field perimetry to define the boundaries of the scotoma of each RP
 401 patient. The mask was superimposed over the retinotopic stimuli aiming to mimic the perceived visual field of RP
 402 patients. A smoothing filter was applied to prevent sharp borders. However, it is impossible to guarantee perfect
 403 masking. Still, we believe that this approach is more ecological than a coarse definition of the scotoma area (e.g.,
 404 circular [34] or quadrant [15]). **Second**, the parameters of the assumed hemodynamic response function may
 405 affect pRF modeling but only absolute, and not relative, pRF size estimates [13] in within group designs. **Last**,
 406 **men are affected slightly more than women, limiting analysis of potential sex-related effects.**

407

408 **5. Conclusion**

409 Functional remapping upon visual loss remains controversial in adulthood, as well as if it reflects true plasticity.
410 We tested this hypothesis in Retinitis Pigmentosa where peripheral retinal loss does not lead to novel fixation loci
411 facilitating the demonstration of plasticity. By using a matched one-to-one scotoma mapping approach in this
412 genetically determined retinal disorder we found strong evidence for long-term reorganization based on population
413 receptive field modelling statistics. Our results align with the view of visual cortical plasticity triggered by
414 peripheral visual loss after the critical period of visual maturation.

419 **Funding**

420 This work was supported by the Portuguese Foundation for Science and Technology (FCT) with the following
 421 grants: E-Rare2-SAU/0001/2008, e-Rare4/0001/2012, COMPETE, POCI-01-0145-FEDER-00744,
 422 FCT/UIDB&P/4950/2020, FCT/2022.02963.PTDC, DSAIPA/DS/0041/2020, MEDPERSYST, POCI-01-0145-
 423 FEDER-016428, and BIGDATIMAGE, CENTRO-01-0145-FEDER-000016 financed by Centro 2020 FEDER,
 424 COMPETE. The sponsor was not involved in neither the study design, data collection, analysis, and interpretation,
 425 article preparation and submission for publication.

426

427 ***CRediT authorship contribution statement***

428 **Otilia C. d'Almeida:** Formal analysis, Supervision, Visualization, Writing - original draft, Writing - review &
 429 editing. **Joana M. Sampaio:** Formal analysis. **Sonia Ferreira:** Conceptualization, Investigation. **Eduardo D.**
 430 **Silva:** Investigation. **Miguel Castelo-Branco:** Conceptualization, Funding acquisition, Supervision, Writing -
 431 review & editing.

432

433 ***Declaration of competing interest***

434 The authors declare that they have no known competing financial interests or personal relationships that could
 435 have appeared to influence the work reported in this paper.

436

437 ***Data availability***

438 Data supporting the findings of this study are available from the corresponding author upon reasonable request.

439

440 ***Acknowledgments***

441 We gratefully acknowledge the collaboration of all participants of this study. We also thank Andreia Pereira for
 442 assistance in data collection.

443

444 ***Appendix A.* Supplementary data**

445 **References**

446 [1] A. Pascual-Leone, A. Amedi, F. Fregni, L.B. Merabet, The plastic human brain cortex, *Annu Rev*
447 *Neurosci* 28 (2005) 377–401. <https://doi.org/10.1146/annurev.neuro.27.070203.144216>.

448 [2] B.A. Wandell, S.M. Smirnakis, Plasticity and stability of visual field maps in adult primary visual
449 cortex, *Nat Rev Neurosci* 10 (2009) 873–884. <https://doi.org/10.1038/nrn2741>.

450 [3] E. Castaldi, C. Lunghi, M.C. Morrone, Neuroplasticity in adult human visual cortex, *Neurosci*
451 *Biobehav Rev* 112 (2020) 542–552. <https://doi.org/10.1016/j.neubiorev.2020.02.028>.

452 [4] C. Lunghi, D.C. Burr, C. Morrone, Brief periods of monocular deprivation disrupt ocular balance
453 in human adult visual cortex, *Current Biology* 21 (2011) R538–R539.
454 <https://doi.org/10.1016/j.cub.2011.06.004>.

455 [5] P. Binda, C. Lunghi, Short-Term Monocular Deprivation Enhances Physiological Pupillary
456 Oscillations, *Neural Plast* 2017 (2017) 6724631. <https://doi.org/10.1155/2017/6724631>.

457 [6] C. Lunghi, M. Berchicci, M.C. Morrone, F. Di Russo, Short-term monocular deprivation alters
458 early components of visual evoked potentials, *Journal of Physiology* 593 (2015) 4361–4372.
459 <https://doi.org/10.1113/JP270950>.

460 [7] P. Binda, J.W. Kurzawski, C. Lunghi, L. Biagi, M. Tosetti, M.C. Morrone, Response to short-term
461 deprivation of the human adult visual cortex measured with 7T BOLD, *eLife* 7 (2018) e40014.
462 <https://doi.org/10.7554/eLife.40014>.

463 [8] J. Lemos, D. Pereira, M. Castelo-Branco, Visual Cortex Plasticity Following Peripheral Damage
464 To The Visual System: fMRI Evidence, *Curr Neurol Neurosci Rep* 16 (2016) 89.
465 <https://doi.org/10.1007/s11910-016-0691-0>.

466 [9] J. Gomez, V. Natu, B. Jeska, M. Barnett, K. Grill-Spector, Development differentially sculpts
467 receptive fields across early and high-level human visual cortex, *Nat Commun* 9 (2018) 788.
468 <https://doi.org/10.1038/s41467-018-03166-3>.

469 [10] M.B. Hoffmann, S.O. Dumoulin, Congenital visual pathway abnormalities: a window onto cortical
470 stability and plasticity, *Trends Neurosci* 38 (2015) 55–65.
471 <https://doi.org/10.1016/j.tins.2014.09.005>.

472 [11] S.O. Dumoulin, T. Knapen, How Visual Cortical Organization Is Altered by Ophthalmologic and
473 Neurologic Disorders, *Annu Rev Vis Sci* 4 (2018) 357–379. <https://doi.org/10.1146/annurev-vision-091517-033948>.

475 [12] M. Ritter, A. Hummer, A.A. Ledolter, G.E. Holder, C. Windischberger, U.M. Schmidt-Erfurth,
476 Correspondence between retinotopic cortical mapping and conventional functional and
477 morphological assessment of retinal disease, *Br J Ophthalmol* 103 (2019) 208–215.
478 <https://doi.org/10.1136/bjophthalmol-2017-311443>.

479 [13] S.O. Dumoulin, B.A. Wandell, Population receptive field estimates in human visual cortex,
480 *Neuroimage* 39 (2008) 647–660. <https://doi.org/10.1016/j.neuroimage.2007.09.034>.

481 [14] H.A. Baseler, A. Gouws, K. V Haak, C. Racey, M.D. Crossland, A. Tufail, G.S. Rubin, F.W.
482 Cornelissen, A.B. Morland, Large-scale remapping of visual cortex is absent in adult humans with
483 macular degeneration, *Nat Neurosci* 14 (2011) 649–655. <https://doi.org/10.1038/nn.2793>.

484 [15] A. Papanikolaou, G.A. Keliris, T.D. Papageorgiou, Y. Shao, E. Krapp, E. Papageorgiou, K. Stingl,
 485 A. Bruckmann, U. Schiefer, N.K. Logothetis, S.M. Smirnakis, Population receptive field analysis
 486 of the primary visual cortex complements perimetry in patients with homonymous visual field
 487 defects, *Proc Natl Acad Sci U S A* 111 (2014) E1656–E1665.
 488 <https://doi.org/10.1073/pnas.1317074111>.

489 [16] U.T. Eysel, G. Schweigart, T. Mittmann, D. Eyding, Y. Qu, F. Vandesande, G. Orban, L. Arckens,
 490 Reorganization in the visual cortex after retinal and cortical damage, *Restor Neurol Neurosci* 15
 491 (1999) 153–164.

492 [17] S.M. Smirnakis, A.A. Brewer, M.C. Schmid, A.S. Tolias, A. Schüz, M. Augath, W. Inhoffen, B.A.
 493 Wandell, N.K. Logothetis, Lack of long-term cortical reorganization after macaque retinal lesions,
 494 *Nature* 435 (2005) 300–307. <https://doi.org/10.1038/nature03495>.

495 [18] D.T. Hartong, E.L. Berson, T.P. Dryja, Retinitis pigmentosa, *Lancet* 368 (2006) 1795–1809.
 496 [https://doi.org/10.1016/S0140-6736\(06\)69740-7](https://doi.org/10.1016/S0140-6736(06)69740-7).

497 [19] C. Hamel, Retinitis pigmentosa, *Orphanet J Rare Dis* 1 (2006) 40. <https://doi.org/10.1186/1750-1172-1-40>.

498 [20] A. Hummer, M. Ritter, M. Woletz, A.A. Ledolter, M. Tik, S.O. Dumoulin, G.E. Holder, U.
 499 Schmidt-Erfurth, C. Windischberger, Artificial scotoma estimation based on population receptive
 500 field mapping, *Neuroimage* 169 (2018) 342–351.
 501 <https://doi.org/10.1016/j.neuroimage.2017.12.010>.

502 [21] **G.T. Prabhakaran, J. Carvalho, A. Invernizzi, M. Kanowski, R.J. Renken, F.W. Cornelissen, M.B. Hoffmann**, Foveal pRF properties in the visual cortex depend on the extent of stimulated visual field, *Neuroimage* 222 (2020) 117250.
 503 <https://doi.org/10.1016/j.neuroimage.2020.117250>.

504 [22] S. Ferreira, A.C. Pereira, B. Quendera, A. Reis, E.D. Silva, M. Castelo-Branco, Primary visual
 505 cortical remapping in patients with inherited peripheral retinal degeneration, *Neuroimage Clin* 13
 506 (2017) 428–438. <https://doi.org/10.1016/j.nicl.2016.12.013>.

507 [23] S. Ferreira, A.C. Pereira, B. Quendera, A. Reis, E.D. Silva, M. Castelo-Branco, Enhanced visual
 508 attentional modulation in patients with inherited peripheral retinal degeneration in the absence of
 509 cortical degeneration, *Neural Plast* 2019 (2019) 8136354. <https://doi.org/10.1155/2019/8136354>.

510 [24] Y. Masuda, H. Horiguchi, S.O. Dumoulin, A. Furuta, S. Miyauchi, S. Nakadomari, B.A. Wandell,
 511 Task-dependent V1 responses in human retinitis pigmentosa., *Invest Ophthalmol Vis Sci* 51 (2010)
 512 5356–64. <https://doi.org/10.1167/iovs.09-4775>.

513 [25] M.I. Sereno, A.M. Dale, J.B. Reppas, K.K. Kwong, J.W. Belliveau, T.J. Brady, B.R. Rosen, R.B.H.
 514 Tootell, Borders of multiple visual areas in humans revealed by functional magnetic resonance
 515 imaging, *Science* 268 (1995) 889–893. <https://doi.org/10.1126/science.7754376>.

516 [26] G. Lerma-Usabiaga, J. Winawer, B.A. Wandell, Population receptive field shapes in early visual
 517 cortex are nearly circular, *Journal of Neuroscience* 41 (2021) 2420–2427.
 518 <https://doi.org/10.1523/JNEUROSCI.3052-20.2021>.

519 [27] M.A. Gannon, S.M. Long, N.A. Parks, Homeostatic plasticity in human extrastriate cortex
 520 following a simulated peripheral scotoma, *Exp Brain Res* 235 (2017) 3391–3401.
 521 <https://doi.org/10.1007/s00221-017-5042-0>.

522

525 [28] B. Dreher, W. Burke, M. Calford, Cortical plasticity revealed by circumscribed retinal lesions or
526 artificial scotomas, in: C. Casanova, M. Ptito (Eds.), *Prog Brain Res*, 2001: pp. 217–246.
527 [https://doi.org/10.1016/s0079-6123\(01\)34016-5](https://doi.org/10.1016/s0079-6123(01)34016-5).

528 [29] B. Röder, R. Kekunnaya, Visual experience dependent plasticity in humans, *Curr Opin Neurobiol*
529 67 (2021) 155–162. <https://doi.org/10.1016/j.conb.2020.11.011>.

530 [30] C. Lunghi, L. Galli-Resta, P. Binda, G.M. Cicchini, G. Placidi, B. Falsini, M.C. Morrone, Visual
531 Cortical Plasticity in Retinitis Pigmentosa, *Invest Ophthalmol Vis Sci* 60 (2019) 2753–2763.
532 <https://doi.org/10.1167/iovs.18-25750>.

533 [31] C.I. Baker, E. Peli, N. Knouf, N.G. Kanwisher, Reorganization of visual processing in macular
534 degeneration, *J Neurosci* 25 (2005) 614–618. <https://doi.org/10.1523/JNEUROSCI.3476-04.2005>.

535 [32] C. Baker, D. Dilks, E. Peli, N. Kanwisher, Reorganization of visual processing in macular
536 degeneration: Replication and clues about the role of foveal loss, *Vision Res* 48 (2008) 1910–1919.
537 <https://doi.org/10.1016/j.visres.2008.05.020>.

538 [33] E. Ricciardi, D. Bottari, M. Ptito, B. Röder, P. Pietrini, The sensory-deprived brain as a unique tool
539 to understand brain development and function, *Neurosci Biobehav Rev* 108 (2020) 78–82.
540 <https://doi.org/10.1016/j.neubiorev.2019.10.017>.

541 [34] H.D.H. Brown, A.D. Gouws, R.J.W. Vernon, S.J.D. Lawrence, G. Donnelly, L. Gill, R.P. Gale,
542 H.A. Baseler, A.B. Morland, Assessing functional reorganization in visual cortex with simulated
543 retinal lesions, *Brain Struct Funct* 226 (2021) 2855–2867. <https://doi.org/10.1007/s00429-021-02366-w>.

544 [35] E.H. Silson, T.S. Aleman, A. Willett, L.W. Serrano, D.J. Pearson, A.M. Rauschecker, A.M.
545 Maguire, C.I. Baker, J. Bennett, M. Ashtari, Comparing Clinical Perimetry and Population
546 Receptive Field Measures in Patients with Choroideremia, *Invest Ophthalmol Vis Sci* 59 (2018)
547 3249–3258. <https://doi.org/10.1167/iovs.18-23929>.

548

549

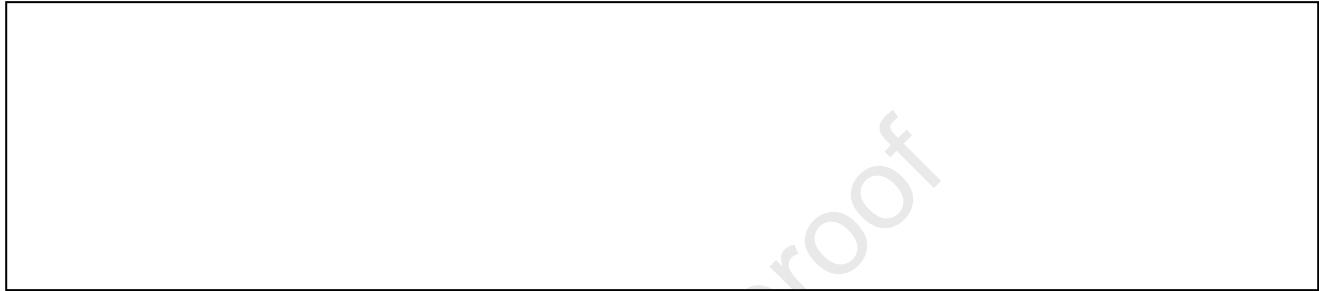
1 **Long term adult visual plasticity after the developmental critical period in genetically determined**
2 ***peripheral visual loss***

3

4 **Highlights**

5 • Functional remapping and adult plasticity after visual loss remain controversial

6 • We used changes in pRF properties to probe cortical reorganization in Retinitis Pigmentosa


7 • An artificial scotoma approach was followed to probe long-term neuroplasticity

8 • Neuroplasticity may occur after peripheral visual loss beyond the critical period

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

A large, empty rectangular box with a thin black border, intended for authors to declare any potential competing interests.