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Abstract Obesity diagnosis using biomedical signals has received increasing attention in recent years and
requires advanced signal processing techniques in order to accurately classify obesity. In this context,
this study proposes an intelligent diagnostic system for obesity classification using flash electroretinogram
(fERG) signals, with a specific focus on cone responses. A novel feature extraction method based on Wavelet
Packet Decomposition (WPD) is employed to decompose the cone responses into high- and low-frequency
components, enabling detailed time—frequency analysis with high resolution. Subsequently, statistical fea-
tures, such as mean, standard deviation, skewness, and kurtosis, are extracted from the decomposed signals
and refined to enhance the training of artificial neural networks (ANNs). To optimize model performance,
Particle Swarm Optimization (PSO) is integrated with ANN, resulting in an ANN-PSO hybrid model.
The experimental dataset, comprising fERG signals from 47 subjects across diverse obesity categories, was
utilized to evaluate the proposed hybrid model. The ANN-PSO model demonstrated high classification
performance, achieving average accuracies of 95.74% and 96.60% for right and left eye signals, respectively,
outperforming traditional ANN models. These findings highlight the effectiveness of WPD in capturing
intricate signal characteristics relevant to obesity levels and confirm the potential of the ANN-PSO model
as a robust, efficient, and reliable diagnostic tool for clinical applications beyond conventional BMI assess-
ments.

1 Introduction

Obesity is a growing health problem associated with many health problems, such as diabetes, hypertension,
musculoskeletal problems, coronary artery disease and premature mortality [1]. It is defined as a chronic disease
that occurs as a result of excess fat mass in the body by the World Health Organization (WHO). To classify
obesity, it is commonly utilized body mass index (BMI) calculated by dividing body weight in kilogram by the
square of the height in meters (kg/m?). In this context, the most commonly used weight categories based on BMI
are as follows: normal weight (BMI 18 to < 25), overweight (BMI 25 to < 30), obese (BMI 30 to < 40), morbid
obese (BMI 40 to < 50) and super obese (BMI>50) [2, 3].
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Similar to obesity, vision impairment is also considered by WHO as a global public health problem [4]. Irreversible
vision loss can occur because of underdiagnoses, delayed diagnosis and delays in treatment [5]. For this reason,
the early diagnosis of eye diseases and the choice of the treatment methods are great of importance [6]. In this
context, ocular electrophysiological tests, which allow the evaluation of all visual pathways from the retinal pigment
epithelium to the occipital cortex, are used frequently used in the diagnosis of eye dysfunction in clinical research.
Among them, flash Electroretinogram (fERG) is a comprehensive and non-invasive method that measures the
mass response of retinal cells to a light stimulus [7-9]. This test has been used for the diagnosis, monitoring and
evaluation of therapeutic interventions efficacy of retinal diseases [1, 10].

The relationship between obesity and eye diseases has been discussed in numerous studies and found that various
eye diseases, such as cataracts, diabetic retinopathy, eye pressure (glaucoma) and yellow spot disease (macular
degeneration), are associated with obesity [11-27]. The effect of obesity on vision of the eye could sometimes be
positive, sometimes negative or sometimes ineffective, so it includes some uncertainty. Furthermore, studies have
shown that BMI alone may be inadequate on prediction of the cardiometabolic risk accurately [28, 29]. Therefore,
clinicians may have difficulties to explain on how obesity affects eye health. In a recent study, Erkaymaz et al. have
investigated the impact of obesity level on a and b waves of fERG signals by applying diverse signal processing
methods [30]. They have revealed out that continuous wavelet transform is the most proper method in revealing
the effects of obesity on eye signals.

On the other hand, automatic diagnosis of diseases has gradually gained importance to provide assistance for
clinicians in recent times. The choice of proper treatment of the disease depends both on accurate diagnosis and
correct classification of the disease [6]. In this context, we have recently proposed an automatic diagnostic system
classifying obesity levels from fERG signals based on discrete wavelet transform. We have found that artificial neural
network-based particle swarm optimization (ANN-PSO) model achieves high classification success as compared
traditional artificial neural network (ANN). On the other hand, it is known that wavelet packet decomposition
(WPD) gives better resolutions in many application because it takes into account both low and high frequencies
of a signal. In this context, in the current study, a framework using WPD is utilized to classify an obesity levels
from cone responses of fERG signals recorded from right and left eyes. We have just taken into consideration cone
response of fERG signals because it has been put forward that cone response gives more information about obesity
as compared with the rod and maximal combined responses [30].

The rest of the paper is organized as follows: in Sect. 2, fERG signal data acquisition, pre-processing, feature
extraction and proposed model used for obesity classification have been explained in brief. In Sect. 3, the results
have been given. In Sect. 4, conclusion and discussion have been introduced.

2 Methodology

In automatic diagnosis of diseases, feature extraction and classification methods are key factors. Feature extraction
is a prerequisite, especially, for classifying multidimensional data sets. This section gives a brief information about
feature extraction and classification methods used in the proposed system for classification of obesity levels from
three different responses of fERG signals. Figure 1 shows the flow chart of the proposed model.
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2.1 fERG signal acquisition

In this experimental study, fERG signals have been acquired from forty-seven volunteers aged between 18 and
70 years with diverse obesity levels namely; normal, overweight, obese, morbid obese and super obese. Volunteers
participated in the study have signed a consent form endorsed by the ethics committee of Zonguldak Biilent
Ecevit University after all essential explanations are given in detail. Besides, ophthalmological examinations of the
volunteers have been examined by a specialist physician.

fERG signals (taken in accordance with ISCEV standards) have been recorded simultaneously from both eyes for
flash stimulus at different levels using Metrovision MonPackOne device after (i) dilation of the eyes, (ii) placement
of electrodes: Dawson—Trick—Litzkow plus (DTL) type electrodes are placed in the lower conjunctival sac, whereas
ground /reference electrodes are attached in the lateral and the middle parts of the forehead, respectively, (iii)
20-min dark adaptation period, and (iv) 15-min light adaptation using the same procedure.

2.2 Preprocessing

In this study, a pre-processing stage is carried out to convert the categorical features in the dataset into numerical
values for processing with machine learning methods. At this stage, various transformation and refinement tech-
niques are applied to the dataset in order to improve the performance of the model and ensure that the features
are analyzed on a common scale [29]. To this end, the dataset is normalized in the range of 0—1 using the min—max
scaling method. Then, feature selection is applied to remove redundant and irrelevant features and improve the
performance of the algorithms. Four different feature selection methods are used to identify the features with the
strongest association with the prediction of disease recurrence.

Subsequently, the class distribution in the dataset is analyzed to assess the balance between relapsing and non-
relapsing patients. The findings show that 28.2% of patients experienced a relapse, while 71.8% did not. This
imbalance can introduce a bias toward the majority class, thereby hindering the accurate classification of the
minority class. To mitigate this issue, SMOTE, a widely adopted oversampling technique in the training phase, is
employed. This approach effectively reduces class imbalance by increasing the representation of the minority class
and improves the suitability of the dataset for classification.

2.3 Wavelet packet decomposition

The wavelet transform (WT) operates within a multiresolution analysis framework, providing resolution of a signal
in both the time and the frequency domains. However, it has inherent limitations: in the high-frequency domain,
it offers high time resolution but low frequency resolution, whereas in the low-frequency domain, it provides high-
frequency resolution but low time resolution [31, 32]. WT cannot thus completely capture the particular features
of a signal. Higher frequency resolution and timing accuracy of WPD overcome these restrictions, though. This
makes WPD a strong pre-processing method for feature extraction since it lets WPD efficiently extract both high-
and low-frequency components of a signal. Using a particular mother wavelet, an original signal (S) in WPD is
recursively dissected at each level into low-frequency approximation (A) and high-frequency detail (D). Crucially,
the decomposition process guarantees that the signal keeps its original information since it neither copies nor
reduces already present information [33].

Figure 2 illustrates an example of a 2-level wavelet packet decomposition. As shown, S is divided into D and
A components by passing through high-pass (H) and low-pass (G) filters. This procedure divides the signal into
several frequency ranges thereby enabling a thorough spectral analysis. Every element follows the same procedure
and breaks down even more at the following level. This recurrent breaking down keeps on until a predefined level
is attained. At the final stage, four signal components corresponding to different frequency bands are obtained:
DDs, DAy, ADy and AAs. These components are obtained by passing the signal through two successive high-pass
filters (H—H), a high-pass followed by a low-pass filter (H-G), a low-pass followed by a high-pass filter (G-H),
and two successive low-pass filters (G—G), respectively.

In addition to its high-frequency resolution and time sensitivity, WPD is also known to give very good results
under noisy signal conditions. The shorter and more detailed decomposition of the frequency bands allows noise to
be effectively filtered out. This is particularly advantageous in the analysis of biological signals. This capability of
WPD provides a significant advantage in biological signal analysis by increasing the reliability of feature extraction
in noisy environments [34-36]. In this context, within the scope of this study, the fERG signals are subjected to a
4-level decomposition with the ‘db4’ wavelet function using the WPD technique. This approach is evaluated as an
effective method to remove noise and extract meaningful features from the signal.
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2.4 Feature extraction

Feature extraction is frequently used for object feature data collection and classification. The design and the per-
formance of the classifier considerably depend on both the attribute and characteristic of the selected features. By
applying WPD, cone responses of fERG signals are separated into a series of detailed and approximate components
which are used as features. Determining the proper features is great of importance for to classify fERG signals.
Hence, in this study, various statistical properties, namely mean absolute, standard deviation (STD), average
power, skewness, kurtosis, and ratio of the absolute mean values are acquired from the WPD components to find
out the main characteristics of the fERG signals.

2.5 Classification-based artificial neural network

Artificial neural networks (ANNSs) inspired by the biological human brain have appeared as viable alternatives to
conventional techniques. The simple structure of ANN consists of three layers: Input layer, hidden layer and output
layer. Each layer possesses a certain number of nodes (or neurons) and interconnections regarding to synaptic
weights between neurons in different layers. Diverse ANN architectures, thus various ANN topologies, can be
created by connection of neurons as feed-forward or backward. Multilayer perceptron (MLP) is an extensively
used ANN topology with input, hidden and output layers whose are fully interconnected via directed feed-forward
links [37]. Besides the output of MLP depends on both the weights and the biases, the number of neuron in each
layer shows differences [38]. The neuron numbers of input and output layers are determined in accordance with
the problem design, whereas the number of hidden layers, the neuron numbers in these layers and the type of
activation function are designated using trial-and-error method [39, 40].

In MLP, the initialization of the training process is random, and learning process is ensured by the setting
of weights till a certain criteria is obtained. In training process, the reduction of the errors is implemented by
applying diverse back-propagation algorithms (such as Quasi-Newton and Levenberg-Marquardt) as backwards
from output to input [41]. In the present study, a one hidden layer perceptron feed-forward ANN model is designed
with the Levenberg—Marquardt learning algorithm. The neuron number in the hidden layer is ascertained from 8
to 20 neurons by trial-and-error method by implementing 100 trials with a minimum criteria (MSE).
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Table 1 Statistical performance of ANN model for cone response of both eyes

ACC (%) SEN (%) SPEC (%)
Right eye WPD Normal 97.87 100 97.30
Overweight 91.49 100 89.19
Obese 95.74 80 100
Morbid obese 89.36 70 94.59
Super obese 95.74 71.43 100
Average 94.04 84.29 96.22
Left eye WPD Normal 95.74 90 97.30
Overweight 91.49 100 89.19
Obese 91.49 80 94.59
Morbid obese 89.36 60 97.30
Super obese 93.62 71.43 97.50
Average 92.34 80.29 95.18
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Table 2 Statistical performance of ANN-PSO model for cone response of both eyes

ACC (%) SEN (%) SPEC (%)
Right eye WPD Normal 91.49 70 97.30
Overweight 95.74 90 97.30
Obese 97.87 100 97.30
Morbid obese 100 100 100
Super obese 93.62 85.71 95
Average 94.74 89.14 97.38
Left eye WPD Normal 95.74 80 100
Overweight 97.87 100 97.30
Obese 95.74 100 94.59
Morbid obese 89.36 60 97.30
Super obese 100 100 100
Average 96.60 92 97.84
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AUC (area under the ROC 09 09}
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2.6 Classification ANN-based PSO model

The performance of ANN considerably depends on the network parameters (weights and bias) calculated by
learning algorithms. In case of complex nonlinear systems, learning algorithms are quite limited and learning
process is also comparatively slow [42]. To discard these drawbacks and obtain the best ANN topology, a particle
swarm optimization (PSO)-based ANN model has been proposed where optimization of the network parameters
is done by PSO algorithm. The proposed ANN model’s topology is 29-H-1, where H shows the hidden neuron
number. The training process has been implemented by changing H between 8 and 20 with 100 trials to acquire
the optimal neuron number in the hidden layers. Then, PSO algorithm is carried out using these acquired network
parameters.

PSO is a stochastic optimization algorithm inspired from social behavior of diverse population of animal species,
such as birds, ants, etc. A simplest version of the PSO algorithm operates by owning a population (called a swarm)
of feasible solutions (called particles) in the problem space. The operation of the PSO algorithm is defined with
the following mathematical expressions:

Viia(k +1) =W*Vi a(k) + 177 (Xpbest (k) — X5, a(k))
+ ¢33 (Xgbest (k) — Xi,a(F)) (1)

Xia(k+1) =X; a(k) + Vi a(k +1) (2)

where V; 4(k) and X; 4(k) are velocity and position vectors of ith particle in dimension d at time k, respectively.
Xpbest is the best position of particle @ and Xghest is the global best position of the population [26]. ¢; and ¢y
are positive acceleration coefficients set to a positive number as 2. r; and ry are random numbers having uniform
distribution. w and b are the inertia weight and the constraint factor adjusted the velocity’s weight, respectively.
In the proposed model, each particle is identified by the parameters w and b. The proposed model’s flowchart is
given in Fig. 1.

2.7 The performance metrics

Model performances are determined using the following metrics:

TP + FP
Accuracy (ACC)(%) “TP + TN + FP + FN @
ensitivity ) =TP I FN
o TN
Specificity (SPEC)(%) TN + FP )

Here, ACC is a criterion used to determine the performance of positive samples and gives the overall performance
of the model. SEN is the correctly classified ratio of positive samples among all positive samples. SPE is the ratio of
exact negative samples among total negative samples. TP (true positive), TN (true negative), FP (false positive)
and FN (false negative) represent the number of correctly detected positive samples, the number of correctly
detected negative samples, the number of false positives but actually negative and the number of positive samples
but falsely detected as negative [6, 43, 44].

3 Results

In this study, the frequency components of cone response in fERG signal are extracted using WPD method due
to the fact that it gives better frequency resolution as compared with traditional WT methods. The dimensions
of these components (wavelet coefficients) are reduced with six different statistical features (mean, average power,
standard deviation, skewness, kurtosis and ratio of the absolute mean value). Thus, a dataset is obtained with
176 features for cone response of 47 subjects including normal, overweight, obese, morbid obese and super obese.
We designed an ANN topology with 176 inputs, 1 output and 1 hidden layer (176-H-1) to classify obesity levels.
The designed topology is trained with the normalized dataset and 100 trials. Optimum hidden neuron numbers
of created topologies for left and right eyes are determined as 6 and 20, respectively. In order to survey the
performance of the best topologies, the classification accuracy, the confusion matrix and the receiver operating
characteristics (ROC) curves have been used in train—test processes. In the training and testing of ANN models
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applied back-propagation learning algorithm, the overall classification accuracy results of the models are given in
Figs. 3 and 4.

Average accuracy of ANN-PSO models (right eye = 95.74%, left eye = 96.60%) is better than traditional
ANN models (right eye = 94.04%, left eye = 92.34%) in general. The designed model has performed well for the
classification of obesity. Then, we also analyze the model performance for each obesity level and test results of the
models for left-right eyes are given in Tables 1 and 2.

Table 1 shows the traditional ANN model’s performances obtained for the cone responses of both eyes. In the
right eye, model performance is high with the rate of 97.87%, 95.74% and 95.74% for normal, obese and super
obese subjects, while its performance is below average accuracy (94.04%) with the rate of 89.36% and 91.49% for
morbid obese and overweight subjects, respectively. On the other hand, in the left eye, while the model exhibits
the best performance for normal (95.74%) and super obese (93.62%) subjects, its performance is below average
accuracy (92.34%) for morbid obese (89.36%), obese (91.49%) and overweight (91.49%) subjects.

In Table 2, for right eye, the designed model exhibits the best performance for overweight (95.74%), obese
(97.87%) and morbid obese (100%) subjects for the right eye. Its performance is below the average accuracy
(95.74%) for normal (91.49%) and super obese (93.62%) subjects. On the other hand, in the left eye, the designed
model’s performance is 97.87% and 100% for overweight and super obese subjects, whereas its performance is
96.60%, 93.62% and 95.74% for morbid obese, obese and normal subjects, respectively.

In addition, the receiver operating characteristic (ROC) curves and the AUC (area under the ROC curve) values
for each obesity levels are achieved and they are demonstrated in Figs. 5, 6, 7 and 8.
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4 Discussion and conclusion

Recently, BMI method has not been seen as an adequate criterion for revealing the relationship between obesity
and diseases. Therefore, new intelligent decision support models are suggested by scientists to diagnose obesity. In
this study different from the literature, efficiency of WPD method to diagnose obesity levels from fERG signals
is investigated and a new approach to classify of obesity levels is recommended. To this aim, we use only fERG
signal’s cone response which has more coded obesity information than the rod and maximal combined responses
[30]. The dataset containing six different statistical features of each sub-band obtained by applying WPD on cone
responses is created. A traditional ANN and ANN-PSO models are designed by training with this dataset.

Our results indicate that ANN-PSO model exhibits better classification performance than traditional ANN model
in determining of obesity levels based on cone responses. In compared model performances, while the proposed
model enhances about 1.8% of classifying success for right eye (95.74% of average accuracy), it improves about
4.6% of classifying success for left eye (96.60% of average accuracy), In our previous study in Yapici et al. [29],
we designed a hybrid model based on DWT method and showed that the hybrid model performed successfully to
classify of obesity levels in cone responses. The model success for right and left eyes is found as 94.04%, 95.74%
of average accuracy, respectively. Compared to our previous model [29], the proposed intelligent support system
based on WPD has the best classification performance in detecting obesity levels from fERG signals.

The most important advantage of the proposed study is that it uses WPD method based on db4 wavelet, the
most suitable feature extraction method for biomedical signals. The WPD method has an effective behavior in
suppressing high-frequency noise by applying more and deeper filtering than other frequency analysis methods.
On the other hand, the most fundamental limitation of this study is that the performance of the WPD varies
depending on the selected wavelet type and the selection of the filtering level. In future studies, we plan to focus
on a more detailed investigation of the effect of noise and explore strategies to mitigate its impact to further
improve the robustness of the proposed method. These analyses will be contributed to the development of more
robust and accurate intelligent decision support systems in the diagnosis of obesity using fERG signals.
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