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Abstract
Purpose  Visual function is a complex process in which external visual stimuli are interpreted. Patients with retinal diseases 
and prolonged follow-up times may experience changes in their visual function that are not detected by the standard visual 
acuity measure, as they are a result of other alterations in visual function. With the advancement of different methods to 
evaluate visual function, additional measurements have become available, and further standardization suggests that some 
methods may be promising for use in clinical trials or routine clinical practice. The objectives of this article are to review 
these additional measurements and to provide guidance on their application.
Methods  The Vision Academy’s membership of international retinal disease experts reviewed the literature and developed 
consensus recommendations for the application of additional measures of visual function in routine clinical practice or 
clinical trials.
Results  Measures such as low-luminance visual acuity, contrast sensitivity, retinal fixation and microperimetry, and reading 
performance are measures which can complement visual acuity measurements to provide an assessment of overall visual 
function, including impact on patients’ quality of life. Measures such as dark adaptation, color vision testing, binocular vision 
testing, visual recognition testing, and shape discrimination require further optimization and validation before they can be 
implemented in everyday clinical practice.
Conclusion  Additional measurements of visual function may help identify patients who could benefit from earlier diagnosis, 
detection of disease progression, and therapeutic intervention. New and additional functional clinical trial endpoints are 
required to fully understand the early stages of macular disease, its progression, and the response to treatment.

Keywords  Vision · Visual acuity · Psychophysical test · Electrophysiological test

Key messages

What is known:

While visual acuity is the most widely used measure of visual function, it only provides a partial representation 

What is new:
Low-luminance visual acuity, contrast sensitivity, retinal fixation and microperimetry, and reading performance 
are measures which can complement visual acuity assessments to determine overall visual function  

Measures such as dark adaptation, color vision testing, binocular vision testing, visual recognition testing, and 
shape discrimination require further optimization and validation before they can be implemented in everyday clini-
cal practice     

Many of these additional measures can help characterize the impact of visual function on patients’ quality of life 
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Introduction

Visual function is a complex process involving multiple 
interactions between the eye and the brain. These intricate 
processes are influenced by many factors, including both 
external environmental factors (e.g., target luminance and 
contrast, ambient illumination) and internal factors attrib-
uted to ocular and brain conditions (e.g., refractive media 
opacity, retinal lesions, brain cortex damage) [1–3]. Visual 
acuity (VA) is the most commonly used measure of visual 
function [4]. By quantifying the minimum visual angle of 
resolution, VA provides a single measurement of a patient’s 
visual function [5]. However, vision in daily life depends 
on varying dimensions, including spatial frequency, spatial 
location, and contrast [6], so measuring visual function is 
not straightforward. Some patients with normal VA often 
report impairment or difficulty with everyday tasks [5, 7], 
while others may experience an improvement in VA and a 
reduction in foveal thickness in parallel with other impair-
ments, such as a lack of color vision recovery [8].

Even well-established methods of measuring visual func-
tion have numerous inefficiencies. For example, the Amsler 
grid is a commonly used tool to evaluate a specific parameter 
of visual function (metamorphopsia) and performance in 
patients with central retinal impairment, but it lacks reliable 
reproducibility [9], making it insufficient to quantify and 
follow-up in most cases. Additionally, VA measurements 
may not be sensitive enough to detect the slow progression 
of all components of visual function. Therefore, additional 
measurements may help identify patients who could benefit 
from earlier diagnosis, detection of disease progression, and 
therapeutic intervention [10].

Different methods have facilitated the understanding and 
measurement of many aspects of visual function, and addi-
tional measurements may provide an opportunity to better 
characterize a patient’s vision and its impact on day-to-day 
functioning and quality of life. Visual function can be eval-
uated according to multidimensional factors, and psycho-
physical and electrophysiological methods can be applied for 
better evaluation. Tests include low-luminance VA (LLVA), 
contrast sensitivity (CS), dark adaptation, retinal fixation, 
color discrimination, reading performance, visual recog-
nition, and shape discrimination. However, some of these 
tests require high cooperation from the patient. Electrophysi-
ological methods represent a more objective evaluation of 
visual function and include electroretinography, multifocal 
electroretinography, and visual evoked potentials [10–14]. 
However, these latter methods are significantly more time-
consuming and will require further standardization before 
adaptation as routine clinical practice.

The objectives of this article are to review the afore-
mentioned measures of visual function and to provide 

recommendations on their application to clinical prac-
tice and clinical trials. It is not intended as an exhaustive 
review of all the available measures of visual function but 
rather as a brief overview of those that are most widely 
used, with guidance for practicing ophthalmologists on 
their advantages, limitations, and indications. The arti-
cle is based on a review of the literature and a consen-
sus among retinal experts who are members of the Vision 
Academy, an international group of retinal physicians who 
work together to share existing skills and knowledge and 
provide collective recommendations on clinical challenges 
in areas where there is a lack of conclusive evidence in the 
literature (www.​visio​nacad​emy.​org).

Recommendations were developed by the authors and 
subsequently reviewed, commented upon, and endorsed 
by a majority of the Vision Academy membership. Vision 
Academy members were asked to rate their agreement with 
the proposed recommendations using the options “strongly 
agree”, “agree”, “neither agree nor disagree”, “disagree”, 
and “strongly disagree”. Responses from more than 50% 
of members were required for the survey to be valid. 
Respondents were also asked for the reimbursement status 
of treatment in their country of practice (i.e., mostly reim-
bursed or mostly out of pocket) to determine if this may 
have influenced their responses. Biases were assessed using 
χ2. Endorsement of the recommended measures of visual 
function was established if 50% or more of the respondents 
indicated that they agreed or strongly agreed. The list of 
Vision Academy members who have contributed to the rec-
ommendations is provided within the “Acknowledgements” 
section of the article.

Parameters of VA (best‑corrected VA) 
and visual function

VA is defined as the ability to identify subtle differences in 
the environment. It is measured according to visual stim-
uli, with excellent VA indicating that the image is clearly 
focused on the retina, the visual pathway is functioning cor-
rectly, and appropriate interpretation of the visual stimuli has 
occurred [15]. VA assessment appears to be a simple method 
of obtaining a fast and reliable measure of a patient’s visual 
function, as it has minimal cost and risk to the patient, it can 
be performed quickly and easily, and there is a high preva-
lence of detectable abnormalities [2, 15]. However, taking 
into consideration all information acquired through vision, 
it could be concluded that VA measurements, such as using 
the Snellen chart, are not sufficient for an integral evaluation 
of visual function. VA is only one aspect of visual function, 
intended to quantify the minimum visual angle of resolution. 
Aspects such as distortion, contrast, dark adaptation, color, 

http://www.visionacademy.org
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and fixation are not evaluated when a Snellen chart test is 
used but are all important for a comprehensive assessment 
of visual function [6, 9, 16–20]. Complementary methods 
to the Snellen chart have recently become a topic of clini-
cal research, as they would be very useful in the clinic for 
the evaluation of visual function in patients with visual 
impairment.

Recommended measures of visual function

VA is the most frequently used tool to measure visual 
function, although there are many other tests that could be 
complementary. In this paper, we review and explain the 
most commonly used tests and highlight recommendations 
for, and the limitations of, each of the tests to provide key 
guidance when considering using any of the tests (Table 1). 
We recommend the use of LLVA, CS, retinal fixation and 
microperimetry, and reading performance as complementary 
measures to visual acuity for the assessment of overall visual 
function.

Low‑luminance visual acuity

Lighting conditions on charts play a greater role in the meas-
urement of CS than VA due to the additivity of luminance 
and contrast effects [21]. Nevertheless, chart luminance still 
plays a crucial role when testing VA [22]. Therefore, tar-
get luminance on printed charts, projected charts, or digital 
screens is an important parameter that requires standardi-
zation when measuring VA [4]. Luminance is defined as 
the light emitted from a surface, with its intensity usually 
expressed in candelas per unit area of the emitting surface 
(cd/m2) [23, 24]. Target luminance refers to the level of 
light on the target display shown to a patient; to measure 
LLVA, luminance is decreased during testing, with either a 
filter placed between the chart and the eye tested or a digital 
screen with luminance control used. Specifically, LLVA is 
usually measured by placing a 2.0-log unit neutral-density 
filter (i.e., a filter that lowers luminance by 100 times, such 
as the KODAK WRATTEN Filter (Kodak, Rochester, NY, 
USA)) over the best correction for that eye and having the 
patient read the normally illuminated Early Treatment Dia-
betic Retinopathy Study chart. Thus, LLVA is a simple, 
inexpensive, and relatively rapid measure of visual func-
tion. LLVA has been recognized as a crucial factor when 
measuring VA. As VA and LLVA measure the same function 
under different luminance conditions, LLVA can be con-
sidered a more accurate surrogate for VA, which operates 
under optimal lighting conditions [4, 21]. Testing vision at 
decreased levels of luminance has been useful in the detec-
tion and monitoring of the progression of different stages 
of age-related macular degeneration (AMD), particularly 

geographic atrophy, compared with measuring VA alone 
[25], suggesting the utility of LLVA in the early identifica-
tion of visual damage in patients with AMD. Other studies 
have demonstrated the value of LLVA in predicting the risk 
of future VA loss in patients with geographic atrophy due 
to non-neovascular AMD. In a cohort of 91 patients, LLVA 
was a strong predictor of the risk of losing VA in eyes with 
geographic atrophy, especially in patients with good vision 
at baseline [19, 26]. Although LLVA assessment is simple to 
implement and commonly used in the clinic, there is a lack 
of standardization in testing. Further investigation is needed 
to establish recommendations for target luminance levels. 
Wood et al. recommend recording the luminance threshold 
used for each LLVA score to improve consistency and reduce 
variability in the test results [27].

Another useful measure is the low-luminance deficit, 
which is calculated as the difference (in logMAR units) 
between LLVA and best-corrected VA measurements [19]. 
Pilotto et al. [28] demonstrated that LLVA and low-lumi-
nance deficit were significantly worse in patients with bilat-
eral versus unilateral geographic atrophy. Furthermore, it 
was observed that low-luminance deficit is another potential 
predictive measure of subsequent VA loss and progression of 
geographic atrophy in patients with AMD [19, 29].

Tests based on low-luminance conditions have proved 
useful in the detection and prediction of geographic atro-
phy in patients with AMD. One possible explanation is 
that intact Müller cells are required for the normal func-
tioning of prereceptorial visual pathways; the intact Mül-
ler cells preserve the original light beam that reaches any 
single Müller cell endfoot, and the light is then relayed to 
the cones [30]. The involvement of Müller cells has been 
observed in bilateral geographic atrophy secondary to AMD 
[28], and decreased sensitivity to light has been observed in 
patients with geographic atrophy even without changes in 
best-corrected VA [25]. Multiple studies have found Müller 
cell injury to be an important risk factor for progression in 
patients with atrophic AMD [31–33].

These data suggest that LLVA could be a complementary 
measure for evaluating visual function in patients with reti-
nal diseases such as AMD, and it could also be employed 
as an alternative endpoint in future clinical trials. Although 
there is a lack of guidelines for applying LLVA in clinical 
practice, we recommend it be used regularly as a measure of 
visual function together with best-corrected VA.

Contrast sensitivity

CS testing has been widely promoted as an important adjunct 
method to, or even a replacement for, VA testing. While VA 
measures the eye’s ability to resolve fine detail, it may not 
be able to adequately assess the ability to see large low-
contrast objects such as faces [19]. For theoretical reasons, 
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most investigators have used sine-wave grating stimuli: pat-
terns consisting of alternating light and dark bars, which 
have a sinusoidal luminance profile. Sine-wave gratings 
vary in spatial frequency (bar width) and contrast [34], and 
this method determines the lowest contrast level at which a 
patient can differentiate optotypes from a background. CS 
can be explored either statically or dynamically [18], and a 
common clinically used tool is the Pelli–Robson CS chart 
[35]. Although the Pelli–Robson chart is widely used by 
clinicians, the Mars Letter Contrast Sensitivity Test is an 
alternative method with certain advantages. Dougherty et al. 
demonstrated that CS scores and repeatability were similar 
between the two methods but that making adjustments for 
contrast levels may enhance repeatability of the Mars test 
and make it an attractive alternative to the Pelli–Robson 
chart. Furthermore, the charts used for the Mars test are 
smaller and made of more durable materials, which may 
offer advantages for transport and use in different settings 
[36, 37]. Various techniques, some of which may be mod-
erately time-consuming, have been adopted to measure CS, 
with many performed as a computerized test in which a dis-
play with a gray-level modulation is used. The advantages of 
computer-controlled acuity tests include more precise acuity 
measurements, increased efficiency, and greater reliability 
[38]. Most studies have generated significant findings in 
patients with early-stage retinal diseases without VA impair-
ment [39], and several studies have shown CS abnormalities 
in patients with diabetes [40, 41]. CS has been reported to be 
a more sensitive measure of early retinal changes in patients 
with diabetes than VA [10], making it a useful tool for evalu-
ating visual function in patients with diabetes with no visible 
ocular alteration. Other reports have also found CS to be a 
useful tool in the diagnosis, follow-up, and treatment of dia-
betic macular edema (DME) and diabetic retinopathy (DR) 
and even after panretinal photocoagulation treatment [42]. 
Furthermore, studies of macular function in patients with 
AMD have attempted to establish whether there is a rela-
tionship between CS findings and the initial stages of AMD, 
with promising results [18, 43, 44]. However, the results 
of a prospective design study by Owsley et al. [45], which 
investigated an association between CS and the incidence of 
AMD at 3 years of follow-up in eyes with normal macular 
health, did not show a CS deficit to be a predictable risk 
factor for the development of AMD. The report proposes 
that previous cross-sectional studies contained biases which 
could affect the reported results. Although the CS test needs 
to be standardized, we recommend it be adopted as a regular 
test in retinal clinical practice.

Retinal fixation and microperimetry

Eye fixation is typically defined as the period that lies 
between two saccadic eye movements, while the patient is 

focused on a given target, in the absence of smooth pursuit 
eye movements [46]. In a 1996 report, Møller et al. [47] 
studied fixational eye movements as a measure for retinal 
diseases, and other, more recent reports have shown that eyes 
with AMD and DME can have alterations in retinal fixation 
tests [7, 48, 49]. Retinal fixation can be affected when there 
is damage to the fovea, resulting in a limited ability to focus 
on a single target or object. Instability in fixation is associ-
ated with a slower reading speed and reduced reading perfor-
mance, affecting a patient’s ability to perform everyday tasks 
[47, 50, 51]. Patients experiencing vision loss due to foveal 
impairment frequently use a noncentral part of the retina 
for fixation, known as the preferred retinal locus [52–54]. 
When retinal fixation is measured through microperimetry, 
the unstable or noncentral fixation can also be quantified [52, 
53, 55]. Fixation is continuously registered during a standard 
microperimetry test (dynamic fixation), performed to assess 
retinal threshold, but it may also be recorded as an isolated 
fixation task (static fixation) [56, 57]. Microperimetry auto-
matically analyzes fixation stability through two different 
methods: the clinical classification method and the bivariate 
contour ellipse area analysis method [55, 56].

According to clinical classification, fixation is defined as 
stable if more than 75% of the fixation points are located 
within a 2° circle, centered on the gravitational center of 
all fixation points; relatively unstable if less than 75% of 
the fixation points are located within a 2° circle but more 
than 75% of the fixation points are located within a 4° cir-
cle; and unstable if less than 75% of all fixation points are 
located within a 4° circle [56]. This method does not allow 
for the typically elliptical distribution of fixation points and 
for the case of multiple preferred retinal loci. It also groups 
people with highly dissimilar fixation abilities into the same 
category; someone with good fixation could have 75% of 
fixation points within a 2° circle or 100% of fixation points 
inside a 0.5° circle [57]. The bivariate contour ellipse area 
analysis method has demonstrated good correlation with 
reading speed measures, suggesting that the quantification 
of retinal fixation parameters, primarily area, could also be 
used to quantify reading ability [57]. Although bivariate 
contour ellipse area analysis presents some limitations, it is 
the more desirable method to evaluate retinal fixation.

In patients with early AMD, Midena et al. [49] found that 
the use of microperimetry for the detection of decreased 
retinal sensitivity may be useful, and Al Shafaee et al. [58] 
found decreased retinal sensitivity in prediabetic patients 
when compared with normal controls when using micro-
perimetry. In patients with neovascular AMD treated with 
intravitreal ranibizumab injections, Mathew et  al. [59] 
investigated a correlation between the anatomical features 
of the macula with functional parameters such as location 
and stability of fixation, also measured with microperimetry. 
They found that VA, absence of subretinal thickening, intact 



1729Graefe's Archive for Clinical and Experimental Ophthalmology (2024) 262:1723–1736	

1 3

subfoveal third hyperreflective band, and intact external lim-
iting membrane were correlated with central and stable loca-
tion of fixation, indicating a direct relationship between the 
integrity of the external retinal layers and central fixation. 
Similarly, disruptions in the ellipsoid zone band and retinal 
pigment epithelium were associated with reduced retinal 
sensitivity, despite VA being maintained [60]. Additionally, 
in patients with subtle vision loss due to AMD, microper-
imetry has demonstrated an ability to objectivize macular 
function, with certain advantages over measuring VA alone. 
This was demonstrated in the study by Tran and Herbort [7], 
where more than one-third of patients with AMD had a bad 
or very bad microperimetry performance in parallel with 
good VA, but patients still complained about their vision in 
daily situations.

Although time can be a limitation in microperimetry tests, 
current technology has improved the timing and quality of 
the examination, with evaluation schemes  taking no more 
than 5 minutes. Microperimetry and retinal fixation are 
therefore valuable tools for the assessment and monitoring 
of macular function in patients with AMD, DR, and DME. 
These two tests are potential indirect indicators of visual 
function, and we recommend their regular use in clinical 
practice. One of the advantages of microperimetry is the 
testing of the entire macular area rather than only foveal 
function.

Reading performance

As many activities of daily living rely on reading, reading 
impairment is the most common complaint among patients 
with low vision participating in quality of life investigations 
[61, 62], with reading performance being a strong predictor 
of vision-related quality of life [13]. Measures such as read-
ing speed are also reasonably different from near VA, with 
the latter being tested on a few sentences on a chart without 
considering the speed in which they are read. Reading longer 
parts of newspaper articles or books depends on a certain 
minimum reading speed. According to some studies, under 
30 words per minute is insufficient for sustained reading [63].

Studies in patients with well-established AMD have 
reported a significant decrease in reading speed [64, 65], 
despite VA being within normal limits. This is because read-
ing ability requires a larger intact retinal area [66]. Reading 
tests have also been found to be a useful parameter in evalu-
ating the response to antiangiogenic treatment. In a prospec-
tive case series of 30 eyes with wet AMD, average reading 
speed increased from 59 words per minute at baseline to 85 
words per minute after three intravitreal injections of anti-
vascular endothelial growth factor therapy [63]. However, 
since the measurement of reading tests can be influenced by 

literacy level and cognitive factors as well as retinal fixation, 
its interpretation must be controlled for possible bias.

In order to better evaluate visual function, sentence-level 
reading acuity tests such as the Colenbrander, MNread, 
and Radner cards are preferred [67, 68]. Additionally, the 
International Reading Speed Texts (IResT; European Vision 
Institute, Brussels, Belgium) is a widely used clinical tool 
for assessing reading performance. Instead of single sen-
tences, IResT uses standardized passages that are long 
enough to provide an accurate estimation of reading speed 
but short enough to prevent fatigue effects [68]. IResT has 
also been used to evaluate the effect of glare on reading in 
patients with AMD and glaucoma [69].

A study by Giacomelli et al. [70], which investigated the 
simultaneous association of several psychophysical meas-
ures with reading ability in patients with mild and moder-
ate low vision due to AMD or DR, concluded that fixation 
instability and CS loss are the key factors limiting reading 
performance in these patients. As described previously, 
retinal fixation is highly correlated with both reading speed 
and reading performance. It has therefore been suggested 
that retinal fixation tests may encompass reading tests, and a 
unique retinal fixation test could be performed to also meas-
ure the reading ability of patients. However, reading perfor-
mance is strongly linked to vision-related quality of life and 
its improvement is a high priority for patients threatened 
with loss of vision. Patient education and cooperation are 
critical for the efficient application of reading performance 
tests. We therefore recommend that regular assessment of 
reading performance be adopted in routine clinical practice, 
independent of assessments of retinal fixation.

Measures of visual function requiring 
further optimization

The use of the following tests requires further research and 
optimization; some tools are time-consuming or are not 
standardized, and others require special equipment or con-
ditions that are not always available (Table 1). Although 
we have reviewed these tests, we recommend caution until 
techniques have been more widely optimized and validated.

Dark adaptation

Photoreceptors adapt to different levels of background light 
and ambient luminance through the bleaching and regenera-
tion of visual pigments. Clinical dark adaptometry primarily 
measures the absolute thresholds of cone and rod sensitivity 
in complete darkness [71–73]. Although performing dark 
adaptation tests can take a long time, new instruments and 
strategies have been developed to make them more feasible 
in the clinic, by decreasing the duration of the tests but still 
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maintaining their sensitivity [17, 74, 75]. However, stand-
ardization is still required.

A correlation between age and rate of rod sensitivity 
recovery during dark adaptation has been reported [76], and 
other studies have shown that when moving from bright light 
to lower illumination, vision can be decreased in patients 
with retinal diseases. In patients with AMD, rod adapta-
tion [75, 77] and cone adaptation [71–73] are impaired, and 
dark adaptation has also been shown to be a highly reliable 
measure of early AMD across a range of measures such as 
rod intercept time, time constant of cone recovery, and rod-
cone break [71, 74, 78]. Currently available evidence dem-
onstrates that dark adaptation can be a potential biomarker 
for the diagnosis and progression of AMD.

For DR and DME, some initial studies have attempted 
to demonstrate the influence of metabolic fluctuation on 
alterations in dark adaptation (such as rod adaptation). This 
concept is based on energy consumption by depolarized rods 
under dark conditions [79, 80]. However, a randomized con-
trolled trial which assessed 24-month outcomes of patients 
wearing an organic light-emitting sleep mask as an interven-
tion to treat and prevent the progression of noncentral DME 
found that the mask did not confer a long-term therapeutic 
benefit on non-center-involving DME due to the dynamic 
nature of the disease [81]. Nevertheless, dark adaptation has 
been shown to be useful in the early detection and prevention 
of retinal damage caused by diabetes mellitus [80]. In DR, 
Hsiao et al. [82] discovered a correlation between optical 
coherence tomography angiography and the rod intercept on 
dark adaptation. Decreased deep retinal vascular perfusion 
density and impaired dark adaptation response were also 
observed as DR severity progressed.

The use of dark adaptation as a clinical outcome measure 
or practical diagnostic tool in retinal diseases is hampered 
by a long test duration, high participant burden, limited 
cooperation from patients (with complaints such as visual 
fatigue), a lack of standardized dark adaptometers, and a lack 
of reproducibility. Further research is needed to make dark 
adaptation ideal for regular use in clinical practice.

Binocular vision testing

Visual function is typically evaluated monocularly. There 
is strong psychophysical evidence that visual perfor-
mance is better under binocular than monocular observa-
tion (known as binocular summation), with improvements 
in high-contrast VA and CS being 10% and more than 
60–70%, respectively [83, 84]. However, in patients with 
AMD in whom one eye is affected more than the other, or 
in whom monocularly preferred retinal fixation points are 
not in corresponding positions, VA in the better-seeing 
eye can be affected by the worse eye when the patient 
is assessed under binocular viewing conditions [85, 86]. 

Conversely, other studies have shown that fixational ocular 
motor control and VA are different depending on whether 
tasks are monocular or binocular, demonstrating that the 
performance of the worse-seeing eye can improve under 
binocular tasks [16, 87]. Binocularity is an additional 
measure of VA; it provides a more realistic measure of a 
patient’s functional visual performance, and after further 
research and standardization, this test could be performed 
daily to capture real-life situations of visual function.

Color vision testing

Several studies have investigated the relationship between 
color vision abnormalities and retinal diseases such as DR 
and DME. Bresnick et al. [88] used a Farnsworth–Munsell 
100-hue test to explore a direct link between the severity 
of DR and DME and color discrimination. They found 
that the magnitude of a blue-yellow discrimination defect 
correlated significantly with the severity of overall DR 
and the severity of macular edema and hard exudate for-
mation, thus supporting the use of color discrimination 
tests together with VA measurements for the management 
of DR and DME [88, 89]. However, Farnsworth–Mun-
sell is time-consuming, so tests such as the Cambridge 
Colour Test or other computer-based tests can be used to 
overcome this limitation [90–92]. A more recent study 
established that VA does not always correlate well with 
clinical severity in DME [93], while other reports have 
demonstrated that patients with DME are three times more 
likely to have impaired color vision than patients with DR 
alone [89, 94].

Color discrimination tests enable a better under-
standing of treatment effect in patients with DME. In a 
study by Abdel-Hay et al. [8], both red–green and yel-
low–blue chromatic sensitivity were assessed in patients 
with DME treated with intravitreal dexamethasone. The 
results showed that red–green chromatic sensitivity can 
be a useful biomarker in monitoring treatment efficacy 
in DME, in addition to VA and central sub-field retinal 
thickness.

Color discrimination tests could also be useful for 
monitoring patients with advanced AMD. Dorrepaal and 
Markowitz [95] found that patients with late AMD and 
poor VA can discern smaller targets on a red-on-yellow 
color scheme than on achromatic white-on-black charts.

In summary, several studies have shown that color dis-
crimination can be a useful additional tool in the early 
stages of DME and also for intermediate to advanced 
stages of AMD and DR [8, 94, 95]. Although promising 
results have been observed, many of these are from initial 
studies with low statistical weight and basic design, so 
further studies are required to determine whether color 
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discrimination tests should be established in regular clini-
cal use.

Visual recognition tests

Most patients with advanced AMD develop a central scotoma 
due to atrophy of the macula, where the density of photore-
ceptors is extremely high [12]. This affects higher-level visual 
functions such as reading and face recognition [96, 97]. Some 
studies have therefore explored visual recognition of objects 
and scenes in patients with AMD, with results showing that 
these types of tests are an additional simple and reliable tool to 
determine the severity of AMD and impact on patients’ daily 
activities [12]. Studies exploring the utility of visual recogni-
tion tests in relation to geographic atrophy as a biomarker of 
progression would also be of interest. However, although prom-
ising, this type of test is new, with limitations due to the patient 
cognition level and also its lack of standardization. Further stud-
ies are needed before its use in routine clinical practice.

Shape discrimination

Metamorphopsia, aniseikonia, and other shape alterations 
are common symptoms of visual function disturbance in 
various macular disorders and can often be disabling for 
the patient. Despite the prevalence of these symptoms in 
common retinal diseases such as AMD, there are no clini-
cally validated tests [11, 98–100]. Several tests, including 
preferential hyperacuity perimetry [101] and MonCV3 
(Metrovision, Pérenchies, France), are currently under-
going investigation and therefore remain a key area of 
further research and evaluation before such tests can be 
used routinely. Some difficulties associated with testing for 
shape discrimination include the lack of standardization 
and considerations regarding a patient’s cognitive level. 
Additional studies are also needed to determine the place 
of this technique in clinical practice or for patients to self-
monitor AMD.

Conclusions and further considerations

The slow progression of some retinal diseases can present 
challenges in clinical trials, as currently used endpoints of 
acuity are relatively insensitive to early disease progression 
[75]. In the same way, an unmet need remains to differenti-
ate the long-term effect of intravitreal drugs, mainly in neo-
vascular AMD where best-corrected VA seems unchanged. 
New and additional functional endpoints are required to fully 
understand the early stages of macular disease, its progres-
sion, and the response to treatment.

While this review largely focused on AMD and DME, 
these techniques are also applicable to other retinal dis-
eases. LLVA, CS, retinal fixation, and color vision test-
ing are promising tests for inherited retinal diseases 
[102–104]. In addition, binocular vision testing could be 
useful in assessing inherited retinal diseases and nystag-
mus [105]. Other methods for visual field testing, such as 
multifocal electroretinograms and multifocal visual evoked 
potentials [106–109], can be valuable in the differential 
diagnoses of retinal and optic nerve diseases [106, 107] 
and can assess visual field effects not yet present on auto-
mated perimetry [110]. While electrophysiologic tests 
are more objective measures of visual function than psy-
chophysical tests, the multifocal visual evoked potential 
method requires specialized software to analyze results 
and is not applied in most routine clinical practices [107]. 
Frequency-doubling technology perimetry can be applied 
as an alternative exploratory method to detect loss of vis-
ual field [111]. Although frequency-doubling technology 
methods are used in macular assessment, they are mainly 
applied in the assessment of the mid-peripheral/perimacu-
lar region to identify visual field defects in optic nerve-
related diseases [112].

Additional tests to measure and quantify other aspects 
of visual function have shown promising results in inde-
pendent studies [48, 49, 113], and some tests are closer 
to being used in clinical practice (CS, retinal fixation, 
LLVA, and reading test/ability). Some are very useful 
for application in all retinal diseases, in that they are 
able to evaluate several functional parameters, are less 
time-consuming to perform, and are highly reproducible. 
Ultimately, many of the tests discussed can help bet-
ter characterize the visual function affecting a patient’s 
quality of life.
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