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A B S T R A C T

Background: Cannabis is a neuromodulating substance that acts on central synaptic transmission. Regular can-
nabis use induces a decreased capacity for dopamine synthesis in the brain. The retina is considered an easy
means of investigating dysfunctions of synaptic transmission in the brain. We have previously studied the impact
of regular cannabis use on retinal function. Using the N95 wave of the pattern electroretinogram, we found a
6 ms-delayed ganglion cells response. Using the b-wave of the photopic flash electroretinogram, we found a
1 ms-delayed bipolar cells response. Here, we investigated amacrine cells function because these cells are located
between the bipolar cells and the ganglion cells and contribute to amplifying the signal between these two layers
of the retina. We tested the effect of regular cannabis use on these retinal dopaminergic cells. We assessed the
role of these cells in amplifying the delay observed previously.
Methods: We recorded dark-adapted 3.0 flash ERG oscillatory potentials in 56 regular cannabis users and 29
healthy controls. The amplitude and implicit time of OP1, OP2, OP3 and OP4 were evaluated.
Results: Cannabis users showed a significant decrease in OP2 amplitude (p = 0.029, Mann-Whitney test) and
OP3 amplitude (p=0.024, Mann-Whitney test). No significant difference was found between the groups for OP1
and OP4 amplitude or for the implicit time of oscillatory potentials.
Conclusions: These results reflect the impact of regular cannabis use on amacrine cells function. They highlight
abnormalities in dopaminergic transmission and are similar to those found in Parkinson's disease. Oscillatory
potentials could be used as markers of central dopaminergic modulation.

1. Introduction

Cannabis is a major public health concern throughout the world. It
is the most prevalent addictive illicit drug (Guttmannova et al., 2017).
The main psychoactive substance in cannabis, tetra-hydro-cannabinol
(THC), is known to act on the central nervous system (Broyd et al.,
2016). This effect is mediated through the modulation of synaptic
transmission in brain neurons (Bossong and Niesink, 2010). In parti-
cular, the glutamatergic and dopaminergic signaling pathways are the
main synaptic transmission pathways affected by regular use of can-
nabis (Colizzi et al., 2016; Sami et al., 2015). As an example, cannabis is

responsible for an excessive rate of glutamatergic synapsis, through the
blockade of the CB1 presynaptic endocannabinoid receptors, and this
leads to cell apoptosis (Schwitzer et al., 2015). Among regular cannabis
users, it also leads to reduced capacity for dopamine synthesis in the
brain (Bloomfield et al., 2016).

The retina is a forward projection of the brain, since it is anatomi-
cally and developmentally an extension of the central nervous system
(Hoon et al., 2014). The retina is composed of successive layers of
neurons with similar properties to brain neurons (London et al., 2013).
These neurons are endowed with neurotransmitter signaling pathways
such as the dopaminergic and glutamatergic pathways, which are also
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found in brain neurons (Dowling et al., 1978; Brandon and Lam, 1983).
The human retina has a functional endocannabinoid system that in-
cludes receptors, ligands and enzymes (Schwitzer et al., 2016). This
system is involved in the modulation of neurotransmitter release in the
retina (Schwitzer et al., 2019a). In light of this, we previously used the
retina as an indirect means of determining the impact of regular can-
nabis use on brain neurotransmission (Schwitzer et al., 2017a;
Schwitzer et al., 2019b; Lucas et al., 2019).

To begin with, we studied the final, more integrated layer of the
retina, the retinal ganglion cells (Schwitzer et al., 2017b). Using the
N95 of the pattern electroretinogram, we found a delayed retinal
ganglion cells response, as shown by a 6 ms delay in the transmission of
action potentials by the retinal ganglion cells. Then, using the b-wave of
the ERG under photopic conditions, we also demonstrated a 1 ms-de-
layed retinal cone bipolar cells response (Schwitzer et al., 2018).

The transmission of electrical signals between the bipolar and the
ganglion cells is amplified by the amacrine cells, however (Fig. 1). This
may explain the six-fold increase in the delay between these two layers.
The amacrine cells are interneurons located in the retinal inner nuclear
layer between the bipolar and the ganglion cells. They form synapses
between the axon terminals of bipolar cells and the dendrites of
ganglion cells. Amacrine cells have a functional endocannabinoid
system that includes cannabinoid CB1 receptors and ligands (Bouchard
et al., 2016). Interestingly, amacrine cells function is influenced by
dopaminergic transmission (Witkovsky, 2004). Amacrine cells have D1
and D2 dopaminergic receptors (Popova, 2014). They can be studied
with oscillatory potentials (OP), small rhythmic wavelets superimposed
on the ascending b-wave of the flash ERG. After filtering to enhance
their amplitude, four wavelets can be distinguished, identified as OP1,
OP2, OP3 and OP4. The generation of these wavelets involves

dopamine (Wachtmeister, 1998). In this study, we investigated ama-
crine cells function to develop a better understanding of the mechanism
responsible for the amplified delay between bipolar and ganglion cells
response. We assume an effect of regular cannabis use on the amacrine
dopaminergic system which may be responsible for the amplified delay
in retinal cells response.

The aim of this study is to investigate amacrine cells by means of
oscillatory potentials in regular cannabis users compared to healthy
controls. We hypothesized an effect of regular cannabis use on amacrine
cells function.

2. Material and methods

2.1. Population and ethics statement

Regular cannabis users (n = 56) and matched healthy drug naive
controls (n = 29) were recruited among the general population via a
special press campaign and data were collected from February 11, 2014
to June 30, 2016. Prior to taking part in the study, volunteers provided
their detailed psychoactive drug and medical history, underwent a full
psychiatric evaluation, and signed consent forms detailing all aspects of
the research. All participants received payment in the form of €100 in
gift vouchers. The study protocol met the requirements of the Helsinki
Declaration and was approved by the Ethics Committee of Nancy
University Hospital. This study is part of a bigger project, Causa Map,
which is researching the impact of regular cannabis use on the visual
system. All participants also underwent neuropsychological assess-
ments and EEG was recorded while performing several visual tasks.

Fig. 1. Schematic organization of the retina with the results of previous studies studying the effect of regular cannabis use on retinal processing compared with
controls.
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2.2. Inclusion criteria, clinical and biological assessments

The inclusion criteria for the cannabis group was regular cannabis
use equivalent to at least 7 cannabis consumptions per week over the
past month, a positive urine toxicology screen for THC metabolites, no
other illicit substance use in the past month, a negative urine toxicology
screen for other illicit substances, and no DSM-IV diagnosis of Axis I
disorders. Since tobacco is regularly mixed with cannabis in joints,
cannabis users may meet the criteria for tobacco dependence according
to the Fagerström test. Cannabis users were required to have abstained
from cannabis use for at least 12 h to avoid acute cognitive dysfunction
caused by cannabis use. The inclusion criteria for the healthy control
subjects were no history of illicit substance use, a negative urine tox-
icology screen for the metabolites and the other illicit drugs tested, and
no history of DSM-IV diagnosis Axis I psychiatric disorders. All the
participants were aged 18 to 35 years, had no history of neurological
disease, no family history of schizophrenia or bipolar disorders, and
were medication-free except for oral contraceptives in the case of
women. They had no history of ophthalmological disease except for
corrective refractive errors. All fared normally in an ophthalmic eva-
luation, which included visual acuity and a fundocopic examination.
Importantly, visual acuity measured with the monomer scale was at
least 10/10 in each eye for all participants. None of the participants
reported visual symptoms, and none was found to have any media
opacities. If participants reported alcohol dependence based on their
score in the Alcohol Use Disorders Identification Test (AUDIT) they
were excluded from the study. The Mini International Neuropsychiatric
Interview (M.I.N·I) was used to assess current and past history of psy-
chiatric diseases and substance use. In addition, the Cannabis Abuse
Screening Test (CAST), Fagerström test and AUDIT were performed to
assess use, abuse and dependance with respect to cannabis, tobacco and
alcohol respectively. They extent of cannabis use was clinically assessed
in an interview and a questionnaire as follow: age when regular can-
nabis use began, total years of cannabis use, average number of joints
smoked daily and weekly over the past month and average number of
grams smoked weekly. In order to obtain objective confirmation of
cannabis consumption, urine drug screens (nal von minden, Moers,
Germany) were performed for cannabis, buprenorphine, benzodiaze-
pines, cocaine, opiates, amphetamines and methadone immediately
before electroretinogram testing.

2.3. Experimental protocol

Electrical signals were recorded simultaneously from both eyes
(averaged for analysis), and dilated pupils (tropicamide 0.5%), with
DTL electrodes (metrovision, Pérenchies, France) placed at the bottom
of the conjunctival sac. The reference electrode was placed on the
forehead. Pupil size was noted before and after dark-adapted ERG re-
cordings and remained systematically constant throughout the testing
period. Ground and reference electrodes were attached to the forehead

and external canthi. Analysis was performed with the experimenter
blind to the status of the subject being recorded (cannabis user or
control). It was performed according to the International Society for
Clinical Electrophysiology of Vision (ISCEV) standards for flash ERG
(McCulloch et al., 2015).

Flash ERG was performed under scotopic conditions with dark-
adapted 3.0 oscillatory potentials as generally used in the literature
(Marmor et al., 2004) and in the ISCEV standards (McCulloch et al.,
2015). It enables interaction between the rod and cone system, induces
a steady state of adaptation and provides consistent, reproducible re-
cording conditions (Wachtmeister, 1998). Participants were positioned
30 cm from the screen. They were dark-adapted for a period of 20 min
before dark-adapted 3.0 ERG oscillatory potentials were performed,
managed by the MonPackONE, which measured the oscillatory poten-
tials corresponding to the electrical activity of the amacrine cells. At
least eight responses were recorded for each participant.

2.4. Analysis

Four main components are usually described in oscillatory poten-
tials: OP1, OP2, OP3 and OP4 (Fig. 2). Two main parameters are de-
rived from the OP, conventionally known as amplitude in microvolts
(μV) and implicit time in milliseconds (ms). The OP1 amplitude was
measured from the baseline to the peak of the wave. The OP2, OP3 and
OP4 amplitudes were measured from the trough of the preceding wave
to the peak of the corresponding wave. Implicit time denotes the time
taken to reach the maximum amplitude of each wave. An overall index,
the sum of the OP1, OP2 and OP3 amplitudes, was also analyzed.

2.5. Statistical analysis

Variables are presented as numbers or median and inter quartile
range (IQR). Depending on the nature of the variables and the non-
parametric distribution of quantitative variables, the Mann-Whitney
test and the Khi square test were used to compare the two groups where
appropriate. For correlation analysis, Spearman's rank correlation
coefficient (Spearman's rho) was used. The relevant differences be-
tween the two groups involved OP2 amplitude, OP3 amplitude, years of
education, AUDIT score and average number of occasions of alcohol use
per week. To adjust the amplitude analysis according to years of edu-
cation and alcohol use, multivariate analysis was planned. As average
weekly alcohol use was strongly correlated with the AUDIT score
(rho = 0.738; p = 0.0001), we used the AUDIT score in the analysis,
presenting the lowest p value in the comparison of the two groups. As
the amplitudes of OP2 amplitude and OP3 were strongly correlated
(rho = 0.954; p = 0.0001), which is a relevant result in this study, only
the OP3 amplitude, with the lowest p value, was used in the multi-
variate analysis. The logistic regression therefore included OP3 ampli-
tude, years of education and the AUDIT score, with cannabis users and
controls as the binary outcome variable. We used alpha<0.05% for
comparisons and to include variables in the multivariate analysis.
Statistical analyses were performed using IBM-SPSS Statistics 22.0 (IBM
corp.)

3. Results

3.1. Demographic and substance use characteristics

The demographic and substance use characteristics of the partici-
pants are described in Table 1. There was no relevant difference be-
tween the controls and the cannabis users in terms of age (p = 0.47) or
gender (p = 0.53), but differences were noted between the groups in
terms of years of education (p = 0.0001; lower in cannabis users) and
alcohol use (higher in cannabis users; p = 0.0003 for average alcohol
consumption/week; p = 0.0001 for AUDIT score). As tobacco is widely
combined with cannabis in joints, 44 out of 56 cannabis users were also

Fig. 2. Typical trace of a scotopic oscillatory potential flash ERG.
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tobacco smokers, whereas all the controls were non-smokers. According
to the Fagerström test, 27 out of 44 cannabis users were not dependent
on tobacco, 12 were slightly dependent, 4 were moderately dependent
and 1 was highly dependent.

3.2. Dark-adapted 3.0 ERG oscillatory potential

The oscillatory potential parameters are described in Table 2. The
median and interquartile range of OP2 amplitude was 33.03 μV (27.43:
41.98) in the cannabis users versus 38.05 μV (34.60: 44.80) in the
controls (Fig. 3). This difference was significant between groups
(p= 0.029; Mann-Whitney test). The median and interquartile range of
OP3 amplitude was 30.05 μV (25.83: 39.15) in the cannabis users
versus 36.85 μV (31.95: 40.85) in the controls (Fig. 4). This difference
was significant between groups (p = 0.024; Mann-Whitney test). The
median and interquartile range of the sum of OP1, OP2 and OP3 am-
plitudes was 72.80 μV (62.60: 95.15) in the cannabis users versus
86.15 μV (78.00, 95.05) in the controls. This difference was significant
between groups (p = 0.040; Mann-Whitney test). There were no dif-
ferences between groups for the OP1 and OP4 amplitudes (p = 0.254
and p = 0.653 respectively). There were no differences in implicit time
for OP1, OP2, OP3 and OP4 (p = 0.502, p = 0.805, p = 0.846 and
p = 0.820 respectively). The OP2 and OP3 amplitudes were strongly
correlated (rho = 0.954; p = 0.0001) (Fig. 5).

The logistic regression with cannabis users and controls as the
binary outcome variable included OP3 amplitude, years of education
and the AUDIT score. The results are as follows: regression was statis-
tically significant (p = 0,0001); Hosmer-Lemeshow test (p = 0.647).
OP3 amplitude remained significant according to AUDIT and years of

education (p = 0.004) (Table 3). The classification results in 84.7% of
subjects being correctly classified by the model (79.3% of controls, 23/
29; 87.5% of cannabis users, 49/56).

4. Discussion

We found a decrease in OP2 amplitude around 5 μV, a decrease in
OP3 amplitude around 7 μV, and a decrease in the sum of OP1, OP2 and
OP3 amplitudes around 13 μV–mainly corresponding to the sum of the
decreased OP2 and OP3 amplitudes–in regular cannabis users com-
pared to the controls, with no modification in implicit time. OP2 and
OP3 are the major components of oscillatory potentials since they ex-
pressed the highest oscillatory potential amplitude. The final OP4 os-
cillatory potential is smaller than OP2 and OP3 (McCulloch et al.,
2015). The first oscillatory potential, OP1, may derive from a different
origin within the retina (Speros and Price, 1981). We found modifica-
tions in oscillatory potential amplitude; this is relevant according to the
literature and indeed, oscillatory potential amplitude is the only para-
meter commonly measured in oscillatory potentials (Wachtmeister,
1998).

Here, the decreased amplitude of OP2 and OP3 in regular cannabis
users could be seen as the consequence of regular cannabis use on
amacrine cells function. As the function of these cells is influenced by
dopaminergic transmission, we assume an effect of regular cannabis use
on the retinal dopaminergic signaling pathway. The main psychoactive
component detected in cannabis–THC–is a neuromodulator substance
that acts on dopaminergic transmission (Bloomfield et al., 2016). Sev-
eral studies using positron emission tomography have highlighted re-
duced dopamine synthesis capacity in regular cannabis users
(Bloomfield et al., 2014), which may be responsible for the decreased
oscillatory potential amplitude in our study. Other results also showed
reduced dopamine transporter density in regular cannabis users (Leroy
et al., 2012), altered dopamine receptor signal transduction and
structural abnormalities in dopaminergic neurons (Spiga et al., 2010).
These findings are consistent with hypoactivity of dopaminergic
transmission in regular cannabis users, which has already been seen in
the retina, in the amacrine cells layer. In regular cannabis use, hypo-
function of the amacrine cells dopaminergic pathway can occur, as
observed in the decreased amplitude of oscillatory potentials.

As cannabis is a dopaminergic modulator, we can confirm that
retinal oscillatory potentials may be good indicators of modulation of
central dopaminergic pathways. Amacrine cells function, as reflected in
oscillatory potentials, is influenced by dopaminergic transmission
(Marmor et al., 1988). Previous studies have shown a correlation be-
tween modifications of oscillatory potentials and central dopaminergic
transmission. For example, reserpine, a dopamine depleter, reduces
oscillatory potential amplitude and L-Dopa, a dopamine precursor, re-
verses this effect (Orlando Gutiérrez and Spiguel, 1973; Citron et al.,
1985). Haloperidol, an antipsychotic drug that blocks dopaminergic
transmission, also decreases oscillatory potential amplitude

Table 1
Demographic and substance use characteristics of the participants.

Cannabis users
(n = 56)

Controls
(n = 29)

p-value

Gender (male/female)a, d 44/12 21/8 0.526
Age (years)b, c 23 (20.5–30) 24 (23–27) 0,466
Education (years)b, c 13 (12–14) 15 (14–16) 0.0001
Average number of AU/weekb, c 4 (1,5–10) 1 (0–3) 0.0003
AUDIT scoresb, c 7 (3,5–9,5) 3 (1–4) 0.0001
Fagerström test scores (n= 44)b 1 (0–3) – –
Average number of cigarettes/

dayb
4 (2−10) – –

Age of first cannabis useb 16 (15–17) – –
Total years of cannabis useb 7 (5–14) – –
Average number of joints/weekb 20 (14–30) – –
CAST scoresb 4 (3–5) – –
Average number of grams of

cannabis/weekb
4,1 (3−10) – –

a Categorical variable represented as frequencies.
b Quantitative variable represented as median and interquartile range.
c Mann-Whitney U test.
d Chi-Square test.

Table 2
Dark-adapted 3.0 oscillatory potentials ERG parameters.

Cannabis users (n = 56) Controls (n = 29) p-value

OP1 Implicit Time (ms)a, b 14.90 (14.60:15.20) 14.90 (14.60:15.20) 0.502
OP1 Amplitude (μV)a, b 14.13 (10.93:16.03) 13.90 (13.15:16.95) 0.254
OP2 Implicit Time (ms)a, b 21.85 (21.40:22.15) 21.70 (21.40:22.30) 0.805
OP2 Amplitude (μV)a, b 33.03 (27.43:41.98) 38.05 (34.60:44.80) 0.029
OP3 Implicit Time (ms)a, b 28.50 (28.05:29.10) 28.50 (28.20:29.10) 0.846
OP3 Amplitude (μV)a, b 30.05 (25.83:39.15) 36.85 (31.95:40.85) 0.024
OP4 Implicit Time (ms)a, b 35.80 (35.25:37.00) 36.10 (35.50:37.30) 0.820
OP4 Amplitude (μV)a, b 17.58 (13.83:22.23) 18.50(13.95:21.70) 0.653
Sum of amplitudes (OP1 + OP2 + OP3)a, b 72.80(62.60:95.15) 86.15(78.00:95.05) 0.040

a Quantitative variable represented as median and interquartile range.
b Mann-Whitney U test.
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(Wachtmeister, 1981). Interestingly, our results confirm previous ob-
servations and can also be viewed as a direct consequence of a de-
creased central level of dopamine.

In Parkinson's disease, a neurological disorder resulting in decreased
central dopamine, patients with early-stage disease showed a decrease
in dark-adapted OP2 and OP3 amplitudes as well as in the sum of OP1,
OP2 and OP3 amplitudes (Nowacka et al., 2015). Interestingly, the
results are similar to our findings in regular cannabis users, which
showed a decreased level of dopamine. In other studies, a decrease in
OP2 amplitude was also found in patients with Parkinson's disease
compared with controls (Kupersmith et al., 1982; Gottlob et al., 1987).
In schizophrenia, a mental illness resulting in enhanced central dopa-
minergic transmission, an increase in oscillatory potential amplitude
was found (Raese et al., 1982). As a consequence, oscillatory potential
amplitude is enhanced when the central level of dopamine is increased

and reduced when the central level of dopamine is decreased. We
suggest oscillatory potentials as a marker of the central level of dopa-
mine.

Our study was performed under scotopic conditions and involved a
mixed rod-cone response. Dopaminergic release under such conditions
is reduced compared with photopic conditions, in which dopaminergic
release is at its highest. Although this study was not performed under
optimal light conditions, we still observed significant results, which
reinforces the relevance of these results. Since tobacco is frequently
combined with cannabis in joints, our previous studies statistically
eliminated the effect of tobacco on the retinal modulations observed in
cannabis users (Schwitzer et al., 2017b; Schwitzer et al., 2018).

One approach to follow up on this study would be to implement a
control group of tobacco smokers, to separate the effect of each sub-
stance on retinal function and specifically on oscillatory potentials. We

Fig. 3. Box plot of oscillatory potentials 2 amplitude with median and interquartile range in regular cannabis users (n = 56) and controls (n = 29).

Fig. 4. Box plot of oscillatory potentials 3 amplitude with median and interquartile range in regular cannabis users (n = 56) and controls (n = 29).

L. Polli, et al. Progress in Neuropsychopharmacology & Biological Psychiatry xxx (xxxx) xxxx

5



could also use a flash 3.0 ERG under mesopic or scotopic conditions to
analyze the oscillatory potentials in optimal light conditions, to en-
hance our study.

5. Conclusion

In summary, regular cannabis users showed decreased amplitude in
OP2 and OP3 wave with the oscillatory potentials 3.0 flash ERG. Theses
abnormalities are underpinned by dysfunctions in the dopaminergic
amacrine cells of the retina. The retina is a crucial site for investigation
of brain synaptic transmission abnormalities. Amacrine cells could be
used as a marker of central dopaminergic modulation and a way to
study dopaminergic diseases.
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