
Threshold versus intensity functions in two-color perimetry

Posterboard#: A0113

Abstract Number: 4386 - A0113

AuthorBlock: *Matthew P. Simunovic*^{1,2}, *Neil Avery*², *Zaid Mammo*² ¹Ophthalmology, University of Sydney, Sydney, New South Wales, Australia; ²Vitreoretinal Unit, Sydney Eye Hospital, Sydney, New South Wales, Australia;

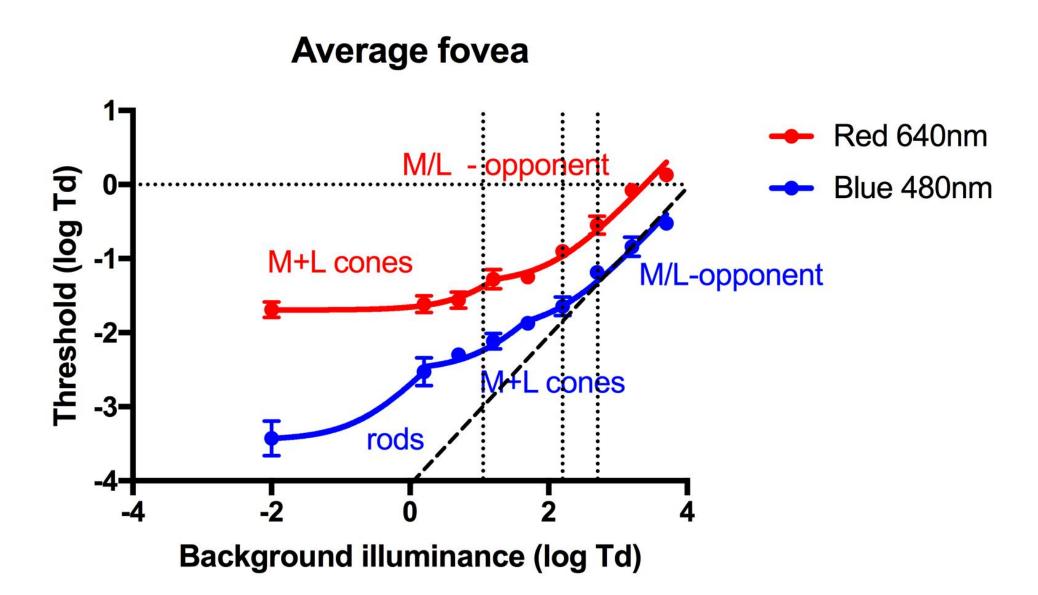
DisclosureBlock: Matthew P. Simunovic, None; Neil Avery, None; Zaid Mammo, None;

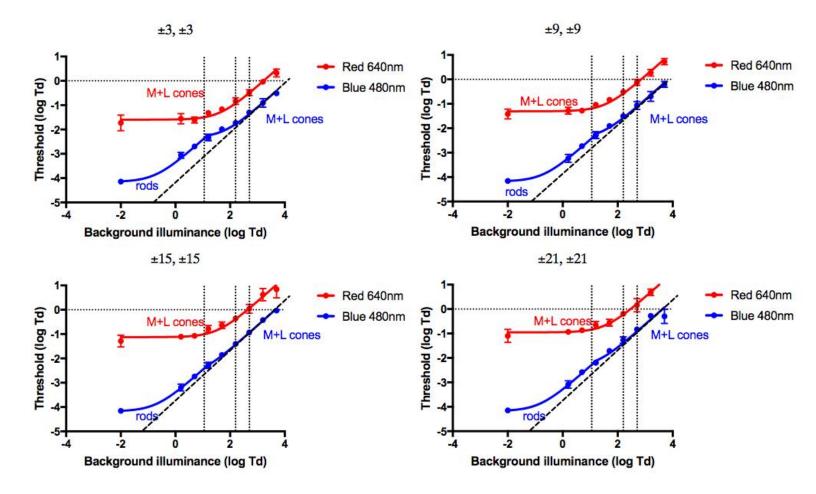
Purpose

To determine the adaptational state and isolation of rod- and cone-mechanisms in two-color perimetry, a technique developed for assessing visual function in inherited retinal disease.

Methods

Seven normal subjects (aged 16-46yr), were examined using a MonCV Perimeter (MetroVision, Paris, France). Visual field tests were undertaken under scotopic conditions and then from -1.5 log cd.m⁻² (0.2 log td) to 2 log cd.m⁻² (3.7 log td; white background) in 0.5 log unit steps. Sensitivities were determined using a 4-2-2 dB staircase for 480nm and 640nm Goldmann size V targets at 17 locations within the central 60 degrees. Data were fitted with tvi functions of the form logT = logT₀ + log ((A+A₀)/A₀), where T is threshold, T₀ is absolute threshold, A is background intensity and A₀ is the 'dark-light' constant.


Results


The minimum value for cone T_0 was at the fovea (-1.7 log td, 640nm stimulus) and for rod T_0 at $\geq \pm 9, \pm 9$ (-4.2 log td, 480 nm stimulus). Cone A_0 was lowest at the fovea (1.0 log td) whilst rod A_0 was lowest at $\pm 9, \pm 9$ (-0.70 log td). No clear rod-cone break was

observed for 640nm stimuli at any stimulus location. For 480nm stimuli at all test locations, there was evidence of transition from rod-detection to cone-detection at mesopic illumination levels. Detection mechanisms did not display Weber behaviour until the background luminance approached 1 log cd.m⁻²/ 2.7 log td (see Figures 1 and 2).

Conclusions

640nm targets are primarily detected by cones at all intensities; 480nm targets, however, are detected by rods until mesopic illumination levels are reached. These data are in keeping with spectral sensitivity estimates at fixed background intensities (Simunovic MP *et al.*.TVST. 2016;5(3):10). Two-color perimetric tvi functions do not display Weber-like behaviour until photopic illumination levels are reached (1 log cd.m⁻²/ 2.7 log td). These findings suggest that two-color perimetry will be vulnerable to perturbations in ocular media and pupil size under clinical conditions, where background intensities are fixed.

