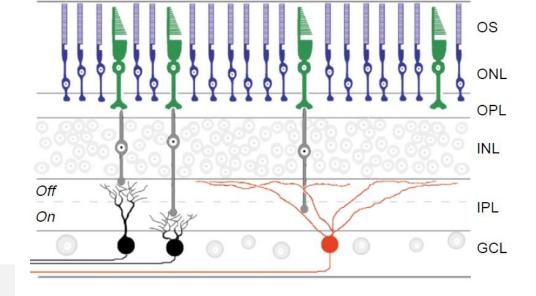


For more than 100 years, the model of vision was based on 2 types of photoreceptors:

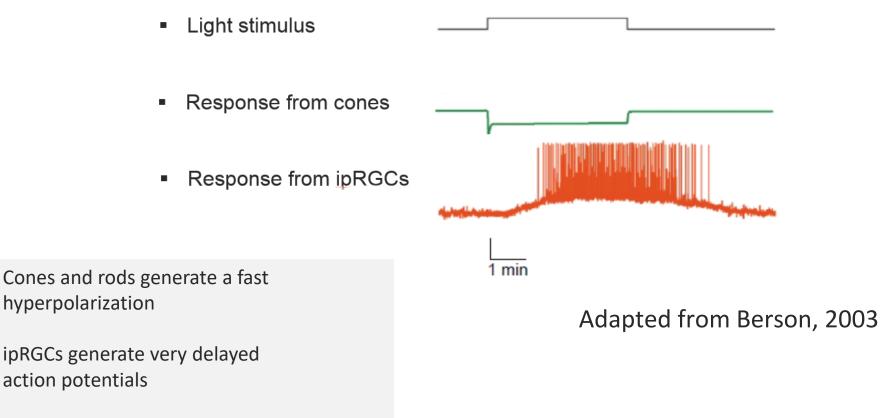
- o rods
- o cones


Cajal ~1880

3rd pathway of vision

Recent evidence for a 3rd type of pathway :

- Visual responses found in rodents without rods and cones (Bonaventure & al, 1961)
- Discovery of melanopsin, a novel photo pigment (Provencio & al, 1998)
- Pigment present in some rodent ganglion cells (Berson & al, 2002)
- Pigment present in some primate ganglion cells (Dacey & al, 2005)
- → Intrinsically photosensitive retinal ganglion cells (ipRGCs)

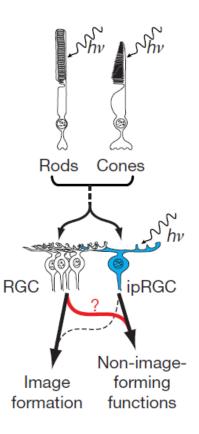

- Cones: green
- Rods: blue
- ipRGCs: red

Berson, 2003

Cones and rods connect to bipolar cells

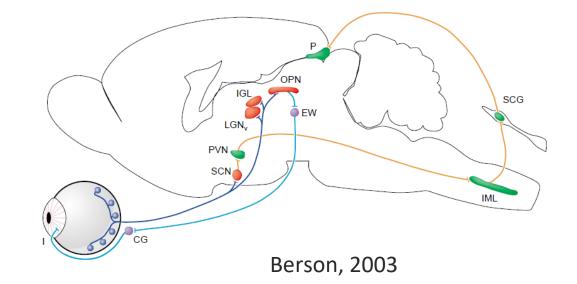
ipRGCs connect directly to the brain

	Rods	Cones	ipRGCs
Light response	Fast hyper- polarization	Fast hyper- polarization	Slow de- polarization
Photo pigment	Rhodopsin	Cone opsin	Melanopsin
Action potential	No	No	Yes
Receptive field	Very small	Very small	Very large

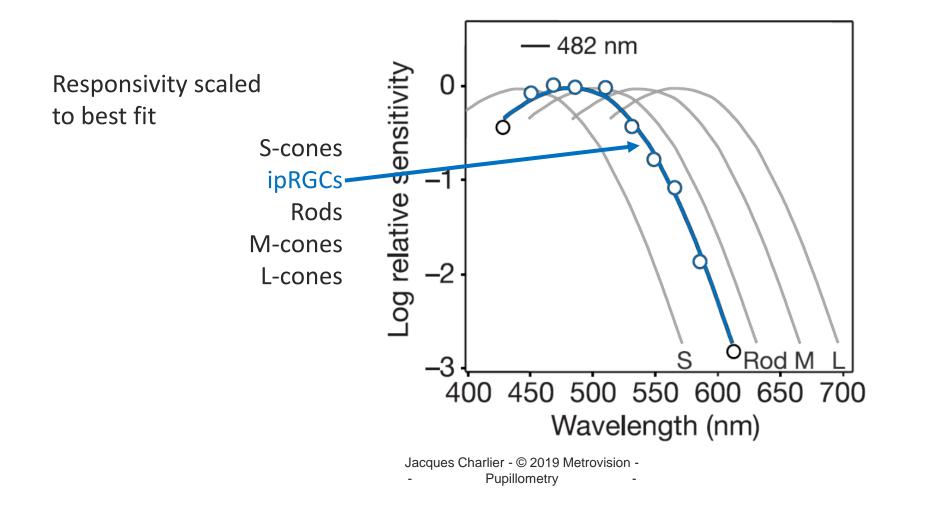

Vol 453 1 May 2008 doi:10.1038/nature06829

LETTERS

Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision

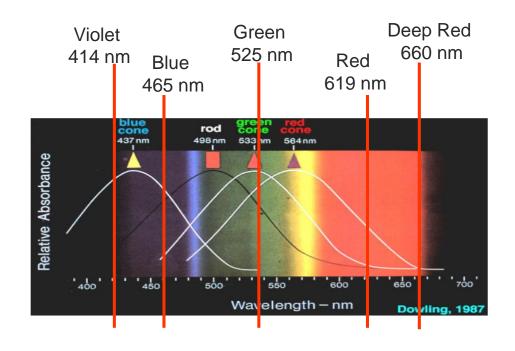

Ali D. Güler¹*, Jennifer L. Ecker¹*, Gurprit S. Lall²*, Shafiqul Haq³, Cara M. Altimus¹, Hsi-Wen Liao³, Alun R. Barnard², Hugh Cahill³, Tudor C. Badea⁴, Haiqing Zhao¹, Mark W. Hankins⁵, David M. Berson⁶, Robert J. Lucas², King-Wai Yau³ & Samer Hattar¹

ipRGCs not only respond directly to light but also receive input from rods and cones



ipRGCs: function

- Control of pupil size
- control of circadian rhythm through inhibition of secretion of melatonin



	Rods	Cones	ipRGCs
Number	120 million	7 million	3000
Sensitivity	high	medium	low
Time response	slow	fast	Very slow
Spectral response	lower for red light	lower for blue light	Maximum for blue ~482 nm
Saturation	low	high	?
Recovery time	long	short	?

• ultra bright LEDs with 5 wavelengths for background and for flash stimulus

post illumination pupil response (PIPR)

• response to red (619nm)

- response to blue (465nm)
- PIPR>20 seconds to recover baseline after 1 second stimulation with blue stimulus ONLY
- PIPR is intrinsic to melanopsin-containing ipRGCs (Gamlin et al., 2007).

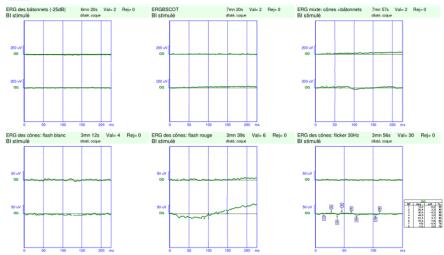
follow-up of patients with retinal dystrophies

Graefes Arch Clin Exp Ophthalmol DOI 10.1007/s00417-011-1809-3

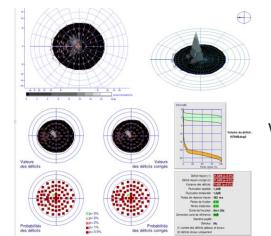
RETINAL DISORDERS

The characterization of functional disturbances in Chinese patients with Bietti's crystalline dystrophy at different fundus stages

Dan Ning Liu • Yong Liu • Xiao Hong Meng • Zheng Qin Yin Ophthalmic Research

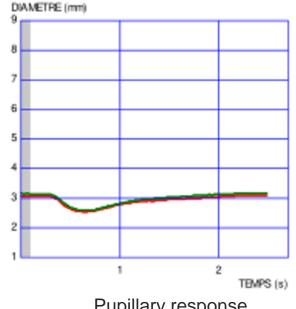

Ophthalmic Res 2012;47:113–121 DOI: 10.1159/000330049

Transient Pupillary Light Reflex in Relation to Fundus Autofluorescence and Dark-Adapted Perimetry in Typical Retinitis Pigmentosa


Yong Liu Dan Ning Liu Xiao Hong Meng Zheng Qin Yin

Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China

follow-up of patients with extinguished ERG (RP)



Flat ERG except small response with 30Hz flicker

Visual field with central island of vision

Jacques Charlier - © 2019 Metrovision -- Pupillometry -

Pupillary response to white flashes

Visual Neurophysiology

Intrinsically Photosensitive (Melanopsin) Retinal Ganglion Cell Function in Glaucoma

Beatrix Feigl,^{1,2} Dietmar Mattes,³ Ravi Thomas,² and Andrew J. Zele¹

Investigative Ophthalmology & Visual Science, June 2011, Vol. 52, No. 7 Copyright 2011 The Association for Research in Vision and Ophthalmology, Inc.

> Int Ophthalmol DOI 10.1007/s10792-014-9920-1

ORIGINAL PAPER

Evaluation of pupillary response to light in patients with glaucoma: a study using computerized pupillometry

Alessio Martucci · Massimo Cesareo · Domenico Napoli · Roberto Pietro Sorge · Federico Ricci · Raffaele Mancino · Carlo Nucci

sleep disorders and glaucoma

— ACTA OPHTHALMOLOGICA SCANDINAVICA 2000 -

High prevalence of sleepdisordered breathing in patients with primary open-angle glaucoma

S. Hakki Onen¹, Frédéric Mouriaux², Lotfi Berramdane², Jean-Claude Dascotte², Jean-François Kulik³ and Jean-François Rouland²

¹Clinique du Sommeil, Pavillon 54, CHRU de Lille,²Service d'Ophtalmologie, Hôpital Huriez, CHRU de Lille, ³CERIM Faculté de Médecine de Lille, Lille, France

Psychiatry Research 210 (2013) 150-158

seasonal disorders

Contents lists available at ScienceDirect
Psychiatry Research
journal homepage: www.elsevier.com/locate/psychres

The post illumination pupil response is reduced in seasonal affective disorder

Kathryn Roecklein ^{a,*}, Patricia Wong ^a, Natalie Ernecoff ^a, Megan Miller ^a, Shannon Donofry ^a, Marissa Kamarck ^a, W. Michael Wood-Vasey ^b, Peter Franzen ^c