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ABSTRACT

Purpose: To assess the prevalence of PRPH?2 in autosomal dominant retinitis pigmentosa
(adRP), to report six novel mutations, to characterize the biochemical features of a recurrent
novel mutation and to study the clinical features of adRP patients.

Design: Retrospective clinical and molecular genetic study.

Methods: Clinical investigations included visual field testing, fundus examination, high-
resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence
imaging and electroretinogram (ERG) recording. PRPH?2 was screened by Sanger sequencing
in a cohort of 310 French families with adRP. Peripherin-2 protein was produced in yeast and
analyzed by Western blot.

Results: We identified 15 mutations, including 6 novel and 9 previously reported changes in
32 families, accounting for a prevalence of 10.3% in this adRP population. We showed that a
new recurrent p.Leu254Gln mutation leads to protein aggregation, suggesting abnormal
folding. The clinical severity of the disease in examined patients was moderate with 78% of
the eyes having 1 to 0.5 of visual acuity and 52% of the eyes retaining more than 50% of the
visual field. Some patients characteristically showed vitelliform deposits or macular
involvement. In some families, pericentral RP or macular dystrophy were found in family
members while widespread RP was present in other members of the same families.
Conclusions: The mutations in PRPH?2 account for 10.3% of adRP in the French population,
which is higher than previously reported (0-8%) This makes PRPH?2 the second most frequent
adRP gene after RHO in our series. PRPH?2 mutations cause highly variable phenotypes and
moderate forms of adRP, including mild cases which could be underdiagnosed.
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INTRODUCTION

In the retina, the human peripherin-2 gene (PRPH2; MIM #179605), also known as RDS
(retinal degeneration slow) encodes Peripherin-2, a transmembrane glycoprotein localized in
the rim regions of photoreceptor outer segment discs.' Peripherin-2 forms homo- and
hetero-tetramers with its paralog protein ROMI (retinal outer segment membrane protein 1;
MIM #180721). These oligomers are essential for the stabilization of the disc rims and are
required to pile up the discs as compact, elongated structures.*® Mutations in PRPH2 cause a
wide range of autosomal dominant retinal dystrophies, either with involvement of the
peripheral retina such as retinitis pigmentosa,’ cone-rod dystrophy'”'" and even one case of
retinitis punctata albescens,'” or with predominant involvement of the macula such as adult
vitelliform macular dystrophy,'® cone dystrophy,'* pattern dystrophy,'>'® and central areolar
choroidal atrophy.'” In addition, the PRPH2 p.Leul85Pro substitution has also been
associated with ROM1 mutations in a digenic form of retinitis pigmentosa.*'**

Among the variety of retinal degenerations caused by PRPH?2 mutations, autosomal dominant
retinitis pigmentosa (adRP) is the most frequent condition. Typical symptoms of RP include
night blindness, progressive visual field constriction, eventually progressing towards total
blindness after several decades.” The prevalence of RP is approximately 1/3,500 to 1/4,000
and the mode of inheritance can be autosomal dominant (30-40%), autosomal recessive (50-
60%) or X-linked (5-15%).2*** RP is the most genetically heterogeneous clinical entity of
inherited retinal disorders with 69 disease-causing genes currently known in this condition
(www.sph.uth.tmc.edu/retnet) including 24 genes causing adRP. The prevalence of the known
genes in adRP ranges from 26.5%>° to 16.6%”’ for the most frequently found mutations in
RHO (MIM #180380), to many genes accounting for less than 1% of the adRP families.
Among those genes, the prevalence of PRPH?2 mutations varies widely from 0% to 8% of the
cases of adRP in cohorts of different origins but no accurate prevalence data are available for
the French population.”®° Also, as usually found in adRP, the severity of the PRPH2 genetic
form is considered as moderate, but it is not known whether or not there are important
variations of severity inside the PRPH?2 genetic category. Therefore, we sought for PRPH?2
mutations in a large cohort of 310 adRP families originating mainly from France. We found
novel mutations, characterized the biochemical features of one novel mutation and we
analyzed the clinical features of the affected patients.

METHODS:

Patients

Three hundred and ten index patients were included in the study. Informed and written
consent was obtained for all patients participating to the study. Patients of European origins
were recruited from 10 different clinical centers in France. The study (# 2008-A01238-47)
received the authorization from the Sud méditerranée IV ethical board committee (# 08 10 05
from 04/11/2008), was approved by the French regulation agency for medication (AFSSAPS
# B81319-70) and is registered at http://clinicaltrials.gov (# NCT01235624). The investigators
followed the tenets of the Declaration of Helsinki.

Clinical investigations

Patients had standard ophthalmologic examination (refractometry, visual acuity, slit-lamp
examination, applanation tonometry, and funduscopy). Kinetic visual fields were determined
with a Goldmann perimeter with targets V4e, I1I4e and I4e. OCT measurement of the macula
was performed using an OCT-3 system (Stratus model 3000, Carl Zeiss Meditec, CA) or with
a spectral domain OCT (Spectralis, Heidelberg, Germany) with the software version 3.0.
Autofluorescence measurements were obtained with the HRA2 Heidelberg retinal confocal
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angiograph (Heidelberg Engineering, Dossenheim, Germany) and fundus pictures were taken.
Full-fields ERGs were recorded using a Ganzfeld apparatus (Metrovision, Pérenchies, France)
with a bipolar contact lens electrode on maximally dilated pupils according to the ISCEV
protocol.”!

For numerical values, visual acuity was measured with Snellen charts in decimal numbers.
Goldmann visual field was quantified by counting the number of subdivisions of the
Goldmann grid within the areas of the V4e isopter and expressed as a percentage of the
normal visual field. Correlations between visual parameters (visual acuity, visual field and
ERG amplitudes) and age were investigated with the coefficient correlation of ranks of
Spearman with a confidence interval at 95%, calculated by a Fisher transformation.

Mutation screening

Genomic DNA was isolated from 10 ml peripheral blood leucocytes using standard salting
out procedure.’> Coding exons and adjacent intronic sequences of the PRPH?2 gene
(NM_000322.4; primer pairs and PCR conditions are available on request) were sequenced
with an Applied Biosystems 3130xL genetic analyser (Applied Biosystems, Foster City, CA)
using a BigDye Terminator cycle sequencing ready reaction kit V3.1 (Applied Biosystems,
Foster City, CA) following manufacturer’s instructions. Sequence analysis and mutation
identification were performed using Collection and Sequence Analysis software package
(Applied Biosystems, Foster City, CA). SIFT, PolyPhen2 and Align GVGD were used to
predict possible impacts of missense variants. The genomic sequence environment of putative
splice-site mutations was analyzed using Human Splicing Finder and MaxEnt.

Genotyping of microsatellite markers and linkage analysis

PCR was carried out in a 25 pl final volume containing 50 ng genomic DNA, 5 pmol of each
primer, 0.2 mM dNTPs (MP Biochemicals, Asse-Relegen, Belgium), 2 mM MgCl,, PCR
buffer and 1 unit of DNA polymerase (AmpliTaq Gold; Applied Biosystems, Foster City,
CA). Initial denaturation at 95°C for 10 minutes was followed by 35 cycles of denaturation at
94°C for 30 seconds, specific annealing temperature for 30 seconds, and extension at 72°C for
1 minute. A final extension step was performed at 72°C for 10 minutes. The PCR products
were diluted and mixed with Genescan 400HD ROX size standard and subsequently analyzed
on an Applied Biosystems 3130xL genetic analyzer (Applied Biosystems, Foster City, CA).
Results were analyzed with GeneMapper software (version 4.0, Applied Biosystems, Foster
City, CA).

Two-point LOD scores were calculated with Superlink-online
(http://bioinfo.cs.technion.ac.il/superlink-online/). The phenotype was analyzed as an
autosomal dominant and fully penetrant trait with an affected allele frequency of 0.001.

Peripherin-2 expression and Western blots

Wild type (WT) and p.Leu254GIn (L254Q) mutant were cloned into the pPICZ expression
vector containing the c-myc epitope and the polyhistidine (His)6-tag as described before,™ the
nucleotide sequence was confirmed by Eurofins MWG using automated DNA sequencing.
Pichia pastoris cells (strain KM71H) were transformed with the Pmel linearised expression
vector, stably transformed cells were spread on YPD plates [1% yeast extract, 2% peptone
(BD), 2% glucose, 2% agar] with media containing 100 pg/ml zeocin. Cells were cultured,
harvested, and stored at -80°C as described before.™ Cells were lysed upon further processing
and membranes containing the WT or L254Q proteins were isolated using differential
centrifugation as described previously. The membranes were dissolved in 1% n-dodecyl-/-D-
maltoside (DDM) using sequentially an 18G, 19G, and 25G needle. His-tagged WT or L.254Q
proteins were purified using Ni-NTA agarose (final buffer 10 mM NaPO4, 150 mM NaCl,
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200 mM imidazole, and 0.1% n-dodecyl-4-D-maltoside). Reducing SDS-PAGE was
performed by mixing 1:1 (v:v) with 2x loading buffer containing 1% B-mercaptoethanol and
incubated for 5 minutes at room temperature prior to loading of the gel. Non-reducing SDS-
PAGE was performed by mixing 1:1 (v:v) with 2x loading buffer without B-mercaptoethanol
and immediate loading after mixing. Transfer to the PVDF membrane and probing — using
cmyc-tagged murine monoclonal (Cell Signaling Technology, Danvers, MA) as primary and
anti-mouse HRP-conjugated (Promega, Fitchburg, WI) as secondary antibody — was done as
described before.

RESULTS

Identification of recurrent and novel PRPH?2 mutations

A cohort of 310 French families with autosomal dominant retinitis pigmentosa (adRP) was
screened for the three exons of the PRPH?2 gene (NM_000322.4). We found that 32 probands
(10.3%) carried a mutation. A total of 15 different mutations were identified (Table 1). Nine
of them were previously described including one nonsense (p.Arg46*) and eight missense
mutations (p.Leul26Pro, p.Cys165Tyr, p.Trpl 79Arg, p.Ser198Arg, p.Gly208Asp,
p-Phe211Leu, p.Pro216Ser and p.Cys222Ser). Six others were novel including four missense
(p-Asp194Glu, p. Trp246Cys, p.Ala253Glu and p.Leu254Gln), one frameshift
(p.-Val69Cysfs*30) and one splice site (c.829-4C>G) mutations. All mutations co-segregated
with the disease phenotype in available family members (Figure 1, 2). The novel mutations
were not identified in 96 ethnically matched control individuals and were not present in the
public human SNP databases (including dbSNP, Ensembl, HapMap, the 1000 Genomes
project and Exome Variant Server).

Among the novel mutations, the truncating p.Val69Cysfs*30 mutation led to a premature
termination located within the second transmembrane o-helix of peripherin-2. No affected
family members were available to test the familial segregation for the p.Asp194Glu mutation
(Figure 2, bottom right), but Asp194 is conserved in 16 peripherin-2 orthologs (Figure 3) and
is surrounded by residues Lys193 and Arg195 which have been found mutated previously.”***
Moreover, the substitution p.Asp194Glu was predicted to be damaging by PolyPhen2 and
align-GVGD programs but not by SIFT (Table 1). For the mutations p.Trp246Cys and
p.Ala253Glu, both residues at positions 246 and 253 are also evolutionary conserved (Figure
3) and Trp246 has been previously found mutated in p.Trp246Arg.” These two mutations
were predicted to be damaging by PolyPhen2, align-GVGD and SIFT but tolerated by SIFT
for p.Ala253Glu (Table 1).

We identified four families (PHRC057, PHRC069, PHRC161 and PHRC162) with the novel
missense mutation, ¢.761T>A (p.Leu254Gln), with all affected subjects heterozygous for the
mutation except two homozygous brothers (I1:2 and II:3) in family PHRC161. These two
subjects had presumed consanguineous parents, while unaffected individuals did not carry the
mutation (Figure 2, left). The evolutionary conserved Leu254 is located in the D2 loop
(Figures 3 and 8) and the substitution p.Leu254Gln is predicted to be damaging by
PolyPhen2, SIFT and align-GVGD programs (Table 1). In order to investigate whether
p.Leu254GIn was a founder mutation, we genotyped the microsatellite markers D6S1575,
D6S1549, D6S1552, D6S282 and D6S1650 that spanned the 2.98 Mb surrounding PRPH?2 in
the available DNA samples in the 4 families. We found that all affected members of the four
families shared an identical allele for the five markers, except patient II:2 of family PHRC161
who had a cross over between D6S1552 and D6S1549 (Figure 2, left). Since the four families
originated from the same area in the south of France, this indicates a founder effect. We
confirmed the linkage at this locus with microsatellite markers reaching a maximum
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cumulated LOD score of 4.484 for D6S1575 (Figure 2, left). Since many patients carried the
p.Leu254Gln, we performed biochemical investigations of the mutated peripherin-2. The wild
type (WT) and the mutated L.254Q peripherin-2 proteins were expressed in yeast. We found
that both purified WT and L254Q mutant showed monomers and formed dimers (Figure 4).
However, aggregates, which were present in both wild type and mutated protein extracts,
were much more abundant with the L254Q mutant. In addition, in the absence of the reducing
agent B-mercaptoethanol in the sample buffer, the amounts of monomeric and dimeric L254Q
were dramatically decreased compared to the WT. Thus, the L254Q mutant exhibited a strong
tendency to form large aggregates which might suggests abnormal folding for L254Q mutant.

Five independent families (PHRCO11, PHRC084, PHRC197, PHRC276 and Fam716) had the
¢.829-4C>G mutation (Figure 2, top right). Two algorithms (Human Splicing Finder and
MaxEnt) predicted that the ¢.829-4C>G mutation would create an acceptor splice site located
three base pair upstream the natural splice site and lead to the in-frame insertion of one
glutamine between amino acids 276 and 277 (p.Glu276_Val277insGln) in the fourth
transmembrane o-helix of peripherin-2 (Figure 8). In four of the five families where several
family members were available, the mutation was found to co-segregate with the disease.
Only individual IV:2 of the family PHRC197 harbored the mutation and was presumed to be
unaffected but he was never examined. No common haplotype for five microsatellite markers
(D6S1575, D6S1549, D6S1552, D6S282, and D6S1650) surrounding PRPH?2 was found (data
not shown) and the families were not originating from the same area suggesting that c¢.829-
4C>G could be a mutation hot spot.

Clinical characterization of patients with PRPH?2 mutations

From 27 to 67 patients were available for clinical analysis, depending on the type of
examination. On average, the age at presentation was 45.2 + 17.5 (n=44, range 13-78). The
initial symptom was night blindness with an apparent age of onset at 30.8 + 13.8 (n=29, range
10-57). Almost half the patients (31/67, 46%) were emmetropic (spherical equivalent -1 to
+1), 36% were myopic (SE < -1) and 18% were hypermetropic (SE > +1), showing a skew
toward moderate myopia (Figure 5, top row, left).

We found that the cataract, typically present in adult patients with retinitis pigmentosa, was
encountered mostly in patients older than 40 (Figure 5, top row, right). The visual acuity was
variable with age (Figure 5, middle row, left), 29/81 (35.8%) eyes having a normal visual
acuity (VA=1) in patients aged 32.3 + 15.2 (range 13 to 61), 34/81 (42.0%) eyes having a
moderately decreased VA (0.9-0.5) in patients aged 47.9 + 15.4 (range 29 to 78), and 18/81
(22.2%) eyes having a severely decreased VA (< 0.4) in patients aged 61.2 + 6.4 (range 43 to
72). The decrease in VA was significantly correlated with age (r =-0.64; p < 0.001). The
visual field also decreased progressively with age (Figure 5, middle row, right). We found
that 32/62 patients (51.6%) kept more than 50% of their visual field, being aged 37.7 + 13.9
(range 16 to 59), while 30/62 (48.4%) had lost more than 50%, being aged 54.8 + 17.6 (range
16 to 78). The decrease in visual field was significantly correlated with age (r =-0.56; p <
0.001). The rod ERG (dim blue) was recordable (b wave > 10 uV) in 26/60 (43.3%) eyes
from patients aged 34.2 + 16.8 (range 16 to 61) and was undetectable in 34/60 (56.7%) eyes
from patients aged 54.2 + 11.5 (range 35 to 78) (Figure 5, bottom row, left). The cone ERG
(30 Hz flicker) was recordable (b wave amplitude > 5 nV) in 49/54 (90.7%) eyes from
patients aged 43.9 + 18.5 (range 16 to 78) and was undetectable in 5/54 (10.3%) eyes from
patients aged 52.4 + 6.8 (range 45 to 58) (Figure 5, bottom row, right). Both the rod and the
cone ERG decrease was correlated with age, r =-0.62 and -0.44; p < 0.001 for rod and cone
function, respectively.
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Fundus examination revealed the presence of pigment deposits in 73% of the patients with a
mean age 45 + 18. Fundus autofluorescence imaging revealed abnormalities in 62.9% (age 47
+ 18) including macular autofluorescence ring, atrophic spots in periphery (Table 2). On OCT
examination, the majority of patients retained their elipsoid zone at the fovea (70.4%)
whereas a minority had a cystoid macular edema (14.3%). We noticed that some patients had
macular involvement with either normal, moderately reduced (Figure 6, row 1, outer left) or
severely decreased (Figure 6, row 1, inner left) visual acuity. Some patients had a mild RP
with a few spots of atrophy in retinal periphery and macular sparing (Figure 6, row 1, inner
right). In other cases, typical pigment deposits and widespread atrophy in the mid peripheral
retina was present (Figure 6, row 1, outer right). Some patients showed a pericentral
localization of the retinal lesions even if other members of the family had a widespread form
(Figure 6, row 2, outer left). This was particularly evident in family PHRC281 carrying the
p.Pro216Ser (Figure 6, row 2, inner left to outer right) in which a family member (III:2) had a
pericentral localization of the retinal lesions sharply delimited from the unaffected peripheral
retina while her sister (III:1) had a typical widespread retinitis pigmentosa. In a few
circumstances, the presence of yellow deposits was noticed, as in family PHRC305 carrying
the p.Pro216Ser, in which the mother had typical retinitis pigmentosa (Figure 6, row 3, outer
left) and the son a vitelliform foveal deposit but no signs of retinitis pigmentosa (Figure 6,
row 3, inner left).

More clinical details were obtained for the two novel recurrent mutations ¢.761T>A
(p.Leu254Gln) and ¢.829-4C>G (p.Glu276 Val277insGln) found in four and five families,
respectively. In the family PHRC161 with p.Leu254Gln, the visual acuity of the two brothers
homozygous for the mutation was severely decreased with 0.1 at age 63 for patient II:3 and
hand motion on left eye and light perception on right eye at age 71 for patient II:2. Yet,
patient 1I:3 still had 0.9 on the left eye at age 53, indicating that homozygosity for the
mutation did not lead to early onset severe disease. In general, clinical examination showed a
progressive worsening of the visual function with age with the youngest patients being pauci-
symptomatic (Figure 6, row 3, inner right) until the legal blindness stage in elder patients
(Figure 6 row 3, outer right to row 4, inner left). In the family PHRC162 with p.Leu254Gln,
variability in electroretinogram responses was noticed. Patient I1:9 who carried the mutation
still had a recordable scotopic rod ERG response and was asymptomatic while other mutation
carriers of the family had undetectable scotopic ERG rod responses (Figure 7). In the five
families with ¢.829-4C>G (p.Glu276 Val277insGln), the disease was very moderate, the
fundus observation being normal (Figure 6, row 4, inner right) or with moderate lesions
(Figure 6, row 4, outer right) and the ERG responses being recordable, suggesting that the
insertion of an additional amino acid had a moderate pathogenic effect.

DISCUSSION

Autosomal dominant retinitis pigmentosa (adRP) is genetically heterogeneous with 24 known
causatives genes so far (www.sph.uth.tmc.edu/retnet). The present study assessed the
prevalence of PRPH?2, one of the major genes mutated in adRP, in a large French cohort of
310 families. We established the prevalence for PRPH?2 as 10.3% in our cohort making this
gene, after RHO (16.5% in French population®’), the second gene most frequently found
mutated in French adRP patients. Therefore, both genes account for more than a quarter
(26.8%) of adRP cases in France. Prevalence studies conducted in the French population
revealed that PRPF31 (MIM #606419) with 6.7%° and RP1 (MIM #603937) with 5.3%°" are
respectively the third and fourth causatives genes. Altogether, these four genes represent
38.8% of French adRP patients.
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Based on the literature, the prevalence of PRPH2 mutations ranges from 0% to 8% of cases of
adRP in cohorts of different origins. Mutations in the PRPH?2 gene appear to be rare in
Southern European adRP patients: 0% (0/48) in Italian® and 1% (2/148) in Spanish38 patients
with adRP. In comparison, the proportion of adRP due to PRPH?2 mutations is higher in
populations with Northern European or Asian origins: 3.5% of Northern American population
with altogether dominant and recessive RP (8/227)*', in 5% of Japanese adRP cases (5/96)’,
in 8% of American (17/206)*, and Swedish (3/38)** adRP patients. With a prevalence of
10.3% in our cohort, it is higher in France than usually reported, possibly because of
underdiagnosed family members with mild disease that we describe in this study, leading to
erroneously classify them as simplex cases. We found indeed that some cases presented as
pericentral forms of RP, and other cases are asymptomatic or pauci-symptomatic. In general,
we found that the RP associated with PRPH?2 mutations is not severe, with many patients
retaining useful visual acuity and visual field at middle age. There is no specific refractive
error, \;\ghich distinguishes this RP from the X-linked RP in which myopia is consistently
found.

This study reports 15 different mutations in PRPH?2 found in 32 families from a cohort of 310
families with adRP; of these, six are novel and nine were previously reported (Table 1). The
referenced mutations, represent 60% of the mutations identified in this report. Nevertheless,
with 40% of novel mutations, it is still worth to screen the whole PRPH?2 gene for novel
changes.

Among the novel mutation, the deletion ¢.205delG leads to a premature stop shortening the
protein to 98 residues instead of 346 amino acids (p.Val69Cysfs*30) and the truncation
affects the second transmembrane o-helix of peripherin-2 (Figure 8) or, more likely, is a
functional null allele. To date, 42 truncating mutations including nonsense substitutions and
frameshift mutations are listed at the Human Genome Mutation Database (HGMD). Although
no DNA samples from additional affected family members were available for segregation
analysis, it is likely that the truncating change presented in this study is a pathogenic mutation
and causes the RP phenotype in family PHRC126.

The four novel missense changes identified in this study affect evolutionary conserved amino
acids (Figure 3), and are located in the large intradiscal loop domain (D2) of peripherin-2
(Figure 8), which contains most disease-causing missense mutations.*’ To date, 124 PRPH2
mutations are listed at the HGMD and approximately 65% of them are located in the D2 loop
of the protein emphasizing the importance of this domain. This D2 loop plays a crucial role in
the dimerization of homo- or hetero-tetramers with ROM1 (retinal outer segment membrane
protein 1), the homolog of peripherin-2, to form essential interactions important for disc
formation and stabilization.*® The p.Leu254GIn substitution appears to be recurrent in the
French population since it was found in four unrelated families with the same geographic
origin. All the affected patients harboring the mutation share the same haplotype for five
surrounding microsatellite markers (maximum cumulated LOD score of 4.484 for D6S1575)
suggesting a founder effect. Two affected brothers (Figure 2, left, I1:2 and II:3 in family
PHRC161) were homozygous for the mutation and were expected to display a more severe
phenotype, although this did not seem obvious from clinical records. It is of note that mice
with a heterozygous defect in Prph2 present a loss of photoreceptor outer segments
organization while homozygous mice have no outer segments.*"* Contrary to the null
mutation presents in mice, the p.Leu254GIn mutation probably acts through a dominant-
negative effect by interfering with the dimerization process. The wild type (WT) and mutant
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(L254Q) peripherin-2 expressed in yeast (Figure 4) migrate as monomers and dimers, but the
mutant peripherin-2 shows a pronounced tendency relative to WT to form larger aggregates.
This might suggest an abnormal folding for the L254Q mutant. The increased aggregation
may disturb homo- and hetero-tetramers with ROM1 interactions, leading to a loss of some
peripherin-2 function.

All novel mutations identified in this study were located either in the D2 loop or truncated the
protein before the D2 loop. Nevertheless, one mutation (c.829-4C>G), which was predicted to
lead to the in-frame insertion of one glutamine (p.Glu276 Val277insGln) was located in the
fourth transmembrane o-helix of peripherin-2 (Figure 8). Three other mutations, within this
last transmembrane o-helix, are mentioned in the literature; the mutation p.Gly266Asp was
found in an adRP patient,* the mutation p.Val268Ile was found in a patient with adult
vitelliform macular dystrophy'? and the in-frame deletion p.Leu271del was identified in a
simplex RP patient.** The Glu276 residue is conserved in all known peripherin-2 orthologs
and is substituted with a glutamine in all known ROM1 orthologs.* The significance of this
highly conserved glutamic acid at position 276 was investigated for peripherin-2 structure and
function.*® The authors created a p.Glu276Gln isosteric substitution, very similar to the
p-Glu276 Val277insGln predicted mutation found in our study, and they demonstrated that
this conserved residue is critical for outer segment discs morphogenesis. The major
physicochemical consequence of the p.Glu276Gln substitution is a loss of ionization
potential. They hypothesized that Glu276 may function as a pH sensor to regulate protein
activity. Other studies suggest that Glu276 may be important for intramolecular interactions
between transmembrane domains.*”**

In conclusion, we have established that the prevalence of PRPH?2 is 10.3% in a French cohort
of 310 adRP individuals which is higher than previously reported. We also established that
PRPH? cause highly variable phenotypes and moderate forms of adRP, including mild cases
which could be underdiagnosed. Moreover, mutation analysis in a large cohort is important
for the design of future clinical trials.

Page 9 of 17



ACKNOWLEDGMENTS / DISCLOSURE

All authors have completed and submitted the ICMJE form.

This project was supported by Union Nationale des Aveugles et Déficients Visuels
(UNADEYV), Programme Hospitalier de Recherche Clinique (PHRC; #12-014-0041),
foundation Voir et Entendre, and foundation Fighting Blindness (FFB; CD-CL-0808-0466-
CHNO (IA) and C-CMM-0907-0428-INSERM04), Fondation Dalloz (prix pour la recherche
en ophtalmologie), Ville de Paris and Région Ile de France and Labex, LIFESENSES (ANR-
10-LABX-65), French state funds managed by the Agence Nationale de la Recherche within
the Investissements d’Avenir program (ANR-11-IDEX-0004-0)

Financial disclosures: C. Zeitz : Rétina France (financial support), Fondation pour la
recherche Médicale (financial support). J.A. Sahel: Pixium Vision (consultancy, stock
options), GenSight Biologics (consultancy, stock options), Sanofi-fovea (consultancy),
Genesignal (consultancy) and patents (FR_10 53381, FR99/02346, EP_04 291067, EP
2005/005242, PCT/EP2005/005184, EP2006/005323, PCT/EP2008/057031,
PCT/EP2008/058672, PCT/EP2008/066878, PCT/EP2009/058447, PCT/EP2009/061764,
PCT/EP2009/061464, PCT/EP2010/055053, PCT/EP2010/058622, PCT/EP2010/059059,
PCT/EP2011/051378, PCT/EP2011/054071).

Contributions of Authors: design of the study (G.M., T.G., W.V., C.-M.D., C.H.); analysis
and interpretation (G.M., T.G., W.V, C.-M.D., C.H.); writing the article (G.M., T.G., C.H.);
critical revision of the article (G.M., T.G., L.A., C.Z., C.-M.D., C.H.); data collection (G.M.,
T.G,W.V,AD,ILA,CZ,VM,CB,C.V,AS,CB.,B.B., LM, C-M.D., C.H.);,
provision of materials, patients, or resources (G.M., T.G., W.V., LA., X.Z., S.D.D., B.P.,
SMS., J-AS,S.O,HD,JK,J-LD.,GL,MW,LEF.,FB.C,M.-CP,JF., LM, C.-
M.D., C.H.)

We thank Jean-Louis Pasquier (Institute for Neurosciences of Montpellier, Montpellier,
France) for art work.

Page 10 of 17



REFERENCES

1.

10.

11.

12.

13.

Arikawa K, Molday LL, Molday RS, Williams DS. Localization of peripherin/rds in the
disk membranes of cone and rod photoreceptors: relationship to disk membrane
morphogenesis and retinal degeneration. J Cell Biol. 1992;116(3):659-667.

Connell G, Bascom R, Molday L, Reid D, McInnes RR, Molday RS. Photoreceptor
peripherin is the normal product of the gene responsible for retinal degeneration in the
rds mouse. Proc Natl Acad Sci USA. 1991;88(3):723-726.

Molday RS, Hicks D, Molday L. Peripherin. A rim-specific membrane protein of rod
outer segment discs. Invest Ophthalmol Vis Sci. 1987;28(1):50-61.

Boesze-Battaglia K, Lamba OP, Napoli AA Jr, Sinha S, Guo Y. Fusion between retinal
rod outer segment membranes and model membranes: a role for photoreceptor
peripherin/rds. Biochemistry. 1998;37(26):9477-9487.

Goldberg AF, Molday RS. Subunit composition of the peripherin/rds-rom-1 disk rim
complex from rod photoreceptors: hydrodynamic evidence for a tetrameric quaternary
structure. Biochemistry. 1996;35(19):6144-6149.

Loewen CJ, Molday RS. Disulfide-mediated oligomerization of Peripherin/Rds and
Rom-1 in photoreceptor disk membranes. Implications for photoreceptor outer segment
morphogenesis and degeneration. J Biol Chem. 2000;275(8):5370-5378.

Molday RS. Photoreceptor membrane proteins, phototransduction, and retinal
degenerative diseases. The Friedenwald Lecture. Invest Ophthalmol Vis Sci.
1998;39(13):2491-2513.

Travis GH, Sutcliffe JG, Bok D. The retinal degeneration slow (rds) gene product is a
photoreceptor disc membrane-associated glycoprotein. Neuron. 1991;6(1):61-70.

Kajiwara K, Hahn LB, Mukai S, Travis GH, Berson EL, Dryja TP. Mutations in the
human retinal degeneration slow gene in autosomal dominant retinitis pigmentosa.
Nature. 1991;354(6353):480-483.

Nakazawa M, Kikawa E, Chida Y, Tamai M. Asn244His mutation of the
peripherin/RDS gene causing autosomal dominant cone-rod degeneration. Hum Mol
Genet. 1994;3(7):1195-1196.

Nakazawa M, Kikawa E, Chida Y, Wada Y, Shiono T, Tamai M. Autosomal dominant
cone-rod dystrophy associated with mutations in codon 244 (Asn244His) and codon 184
(Tyr184Ser) of the peripherin/RDS gene. Arch Ophthalmol. 1996;114(1):72-78.

Kajiwara K, Sandberg MA, Berson EL, Dryja TP. A null mutation in the human
peripherin/RDS gene in a family with autosomal dominant retinitis punctata albescens.
Nat Genet. 1993;3(3):208-212.

Felbor U, Schilling H, Weber BH. Adult vitelliform macular dystrophy is frequently
associated with mutations in the peripherin/RDS gene. Hum Mutat. 1997;10(4):301-309.

Page 11 of 17



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Fishman GA, Stone EM, Alexander KR, Gilbert LD, Derlacki DJ, Butler NS. Serine-27-
phenylalanine mutation within the peripherin/RDS gene in a family with cone dystrophy.
Ophthalmology. 1997;104(2):299-306.

Keen TJ, Inglehearn CF, Kim R, Bird AC, Bhattacharya S. Retinal pattern dystrophy
associated with a 4 bp insertion at codon 140 in the RDS-peripherin gene. Hum Mol
Genet. 1994;3(2):367-368.

Kim RY, Dollfus H, Keen TJ, et al. Autosomal dominant pattern dystrophy of the retina
associated with a 4-base pair insertion at codon 140 in the peripherin/RDS gene. Arch
Ophthalmol. 1995;113(4):451-455.

Hoyng CB, Heutink P, Testers L, Pinckers A, Deutman AF, Oostra BA. Autosomal
dominant central areolar choroidal dystrophy caused by a mutation in codon 142 in the
peripherin/RDS gene. Am J Ophthalmol. 1996;121(6):623-629.

Piguet B, Héon E, Munier FL, et al. Full characterization of the maculopathy associated
with an Arg-172-Trp mutation in the RDS/peripherin gene. Ophthalmic Genet.
1996;17(4):175-186.

Wells J, Wroblewski J, Keen J, et al. Mutations in the human retinal degeneration slow
(RDS) gene can cause either retinitis pigmentosa or macular dystrophy. Nat Genet.
1993;3(3):213-218.

Yanagihashi S, Nakazawa M, Kurotaki J, Sato M, Miyagawa Y, Ohguro H. Autosomal
dominant central areolar choroidal dystrophy and a novel Argl95Leu mutation in the
peripherin/RDS gene. Arch Ophthalmol. 2003;121(10):1458-1461.

Dryja TP, Hahn LB, Kajiwara K, Berson EL. Dominant and digenic mutations in the
peripherin/RDS and ROM1 genes in retinitis pigmentosa. Invest Ophthalmol Vis Sci.
1997;38(10):1972-1982.

Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due to mutations at the
unlinked peripherin/RDS and ROMI loci. Science. 1994;264(5165):1604-1608.

Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368(9549):1795-
1809.

Haim M. Epidemiology of retinitis pigmentosa in Denmark. Acta Ophthalmol Scand
Suppl. 2002;(233):1-34.

Dryja TP, McGee TL, Reichel E, et al. A point mutation of the rhodopsin gene in one
form of retinitis pigmentosa. Nature. 1990;343(6256):364-366.

Sullivan LS, Bowne SJ, Birch DG, et al. Prevalence of disease-causing mutations in
families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200

families. Invest Ophthalmol Vis Sci. 2006;47(7):3052-3064.
Audo I, Manes G, Mohand-Said S, et al. Spectrum of rhodopsin mutations in French

autosomal dominant rod-cone dystrophy patients. Invest Ophthalmol Vis Sci.
2010;51(7):3687-3700.

Page 12 of 17



28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Ekstrom U, Ponjavic V, Andréasson S, Ehinger B, Nilsson-Ehle P, Abrahamson M.
Detection of alterations in all three exons of the peripherin/RDS gene in Swedish

patients with retinitis pigmentosa using an efficient DGGE system. MP, Mol Pathol.
1998;51(5):287-291.

Sohocki MM, Daiger SP, Bowne SJ, et al. Prevalence of mutations causing retinitis
pigmentosa and other inherited retinopathies. Hum Mutat. 2001;17(1):42-51.

Ziviello C, Simonelli F, Testa F, et al. Molecular genetics of autosomal dominant
retinitis pigmentosa (ADRP): a comprehensive study of 43 Italian families. J Med Genet.
2005;42(7):e47.

Marmor MF, Fulton AB, Holder GE, et al. ISCEV Standard for full-field clinical
electroretinography (2008 update). Doc Ophthalmol. 2009;118(1):69-77.

Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA
from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.

Vos WL, Vaughan S, Lall PY, McCaffrey JG, Wysocka-Kapcinska M, Findlay JBC.
Expression and structural characterization of peripherin/RDS, a membrane protein
implicated in photoreceptor outer segment morphology. Eur Biophys J. 2010;39(4):679-
688.

Jacobson SG, Cideciyan AV, Kemp CM, Sheffield VC, Stone EM. Photoreceptor
function in heterozygotes with insertion or deletion mutations in the RDS gene. Invest
Ophthalmol Vis Sci. 1996;37(8):1662-1674.

Kohl S, Christ-Adler M, Apfelstedt-Sylla E, et al. RDS/peripherin gene mutations are
frequent causes of central retinal dystrophies. J Med Genet. 1997;34(8):620-626.

Audo I, Bujakowska K, Mohand-Said S, et al. Prevalence and novelty of PRPF31
mutations in French autosomal dominant rod-cone dystrophy patients and a review of
published reports. BMC Med Genet. 2010;11:145.

Audo I, Mohand-Said S, Dhaenens C-M, et al. RP1 and autosomal dominant rod-cone
dystrophy: novel mutations, a review of published variants, and genotype-phenotype
correlation. Human Mutation. 2012;33(1):73-80.

Milla E, Maseras M, Martinez-Gimeno M, et al. [Genetic and molecular characterization
of 148 patients with autosomal dominant retinitis pigmentosa (ADRP)]. Arch Soc Esp
Oftalmol. 2002;77(9):481-484.

Kaplan J, Pelet A, Martin C, et al. Phenotype-genotype correlations in X linked retinitis
pigmentosa. J Med Genet. 1992;29(9):615-623.

Boon CJF, den Hollander AI, Hoyng CB, Cremers FPM, Klevering BJ, Keunen JEE.
The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene.
Prog Retin Eye Res. 2008;27(2):213-235.

Hawkins RK, Jansen HG, Sanyal S. Development and degeneration of retina in rds

mutant mice: photoreceptor abnormalities in the heterozygotes. Exp Eye Res.
1985;41(6):701-720.

Page 13 of 17



42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Sanyal S, Jansen HG. Absence of receptor outer segments in the retina of rds mutant
mice. Neurosci Lett. 1981;21(1):23-26.

Kajiwara K, Berson EL, Dryja TP. Screen for mutations in the entire coding sequence of
the human RDS/ peripherin gene in patients with hereditary retinal degenerations. Invest
Ophthalmol Vis Sci. 1992;33(4):1149-1151.

Jin Z-B, Mandai M, Yokota T, et al. Identifying pathogenic genetic background of
simplex or multiplex retinitis pigmentosa patients: a large scale mutation screening
study. J Med Genet. 2008;45(7):465-472.

Goldberg AFX. Role of peripherin/rds in vertebrate photoreceptor architecture and
inherited retinal degenerations. Int Rev Cytol. 2006;253:131-175.

Goldberg AFX, Ritter LM, Khattree N, et al. An intramembrane glutamic acid governs
peripherin/rds function for photoreceptor disk morphogenesis. /nvest Ophthalmol Vis
Sci. 2007;48(7):2975-2986.

Kovalenko OV, Metcalf DG, DeGrado WF, Hemler ME. Structural organization and
interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol.
2005;5:11.

Seigneuret M. Complete predicted three-dimensional structure of the facilitator
transmembrane protein and hepatitis C virus receptor CD81: conserved and variable
structural domains in the tetraspanin superfamily. Biophys J. 2006;90(1):212-227.

Meins M, Griining G, Blankenagel A, et al. Heterozygous “null allele” mutation in the
human peripherin/RDS gene. Hum Mol Genet. 1993;2(12):2181-2182.

Renner AB, Fiebig BS, Weber BHF, et al. Phenotypic variability and long-term follow-
up of patients with known and novel PRPH2/RDS gene mutations. Am J Ophthalmol.
2009;147(3):518-530.

Souied EH, Rozet JM, Gerber S, et al. Two novel missense mutations in the
peripherin/RDS gene in two unrelated French patients with autosomal dominant retinitis
pigmentosa. Eur J Ophthalmol. 1998;8(2):98-101.

Bareil C, Delague V, Arnaud B, Demaille J, Hamel C, Claustres M. W179R: a novel
missense mutation in the peripherin/RDS gene in a family with autosomal dominant
retinitis pigmentosa. Hum Mutat. 2000;15(6):583-584.

Ekstrom U, Ponjavic V, Abrahamson M, et al. Phenotypic expression of autosomal
dominant retinitis pigmentosa in a Swedish family expressing a Phe-211-Leu variant of
peripherin/RDS. Ophthalmic Genet. 1998;19(1):27-37.

Fishman GA, Stone E, Gilbert LD, Vandenburgh K, Sheffield VC, Heckenlively JR.
Clinical features of a previously undescribed codon 216 (proline to serine) mutation in
the peripherin/retinal degeneration slow gene in autosomal dominant retinitis
pigmentosa. Ophthalmology. 1994;101(8):1409-1421.

Downs K, Zacks DN, Caruso R, et al. Molecular testing for hereditary retinal disease as
part of clinical care. Arch Ophthalmol. 2007;125(2):252-258.

Page 14 of 17



FIGURE LEGENDS

Figure 1: Pedigrees of French families with autosomal dominant retinitis pigmentosa
and with recurrent mutations in PRPH?2 gene identified in this study

Filled symbols indicate affected family members; squares: males; circles: females; arrows:
index patients. (Top left) Family pedigrees of patients showing different recurrent PRPH?2
mutations. (Top middle) Families with c.136C>T (p.Arg46*) mutation. (Top right) Families
with ¢.494G>A (p.Cys165Tyr) mutation. (Middle left) Families with c.631T>C
(p.Phe211Leu) mutation. (Bottom left) Families with ¢.594C>G (p.Ser198 Arg) mutation.
(Bottom middle) Families with ¢.535T>C (p.Trp1 79Arg) mutation. (Bottom right) Families
with ¢.646C>T (p.Pro216Ser) mutation.

Figure 2: Pedigrees of French families with autosomal dominant retinitis pigmentosa
and with novel mutations in PRPH?2 gene identified in this study

(Left) Haplotypes at the PRPH?2 locus of four families showing the ¢.761T>A (p.Leu254Gln)
mutation and surrounding microsatellite markers. The common haplotype is shown in black.
(Top right) Five families with ¢.829-4C>G splice site mutation. (Bottom right) Family
pedigrees of patients showing different novel PRPH?2 mutations.

Figure 3: Conservation of amino acids affected by novel PRPH?2 missense mutations
identified in this study in patients with autosomal dominant retinitis pigmentosa.
Multiple amino acid sequence alignment of peripherin-2 for a region surrounding the novel
p-Asp194Glu, p.Trp246Cys, p.Ala253Glu and p.Leu254GIn missense mutations. The site of
the mutation is indicated by an arrowhead.

Figure 4: Western blot analysis of wild type and p.Leu254GIn mutant peripherin-2
protein produced in yeast

Western blots of the wild type (WT) and the mutated p.Leu254GIn (L254Q) peripherin-2
from P. pastoris purified with Ni-NTA superflow agarose in the presence (+) or in the
absence (-) of the reducing agent B-mercaptoethanol (3-M) in the sample buffer. The blot was
probed with a monoclonal anti-c-myc antibody.

Figure 5: Clinical data of the patients with autosomal dominant retinitis pigmentosa and
with PRPH?2 gene mutations

(Top row, left) Refractive errors were classified in 5 groups as either severe myopia (< -3[),
moderate myopia ([-3;-1]), emmetropia ([-1;+1]), moderate hyperopia (]+1;+3]) or severe
hyperopia (>+3[) and the percentage (y-axis) and the absolute number (above each bar) of
patients are given for each group. (Top row, right) Apparent onset of cataract was classified in
4 groups depending on age and the percentage (y-axis) and the absolute number (above each
bar) of patients are given for each group. Visual acuity in decimal values (Middle row, left),
percentage of remaining Goldman visual field (Middle row, right), b-wave amplitude of the
dim blue electroretinogram (ERG) testing rods (Bottom row, left) and peak-to-peak amplitude
of the 30 Hz flicker ERG testing cone function (Bottom row, right) were plotted against age.

Figure 6: Fundus imaging of patients with autosomal dominant retinitis pigmentosa and
with PRPH? gene mutations

On top of each picture, (fundus photographs, fundus autofluorescence (FAF) photographs and
spectral-domain optical coherence tomography (OCT) scans), the family number (PHRC), the
patient number in the family, the age, the visual acuity in decimal values are indicated. (Row
1, outer left) Left eye FAF, macular alteration, parafoveal loss of autofluorescence (arrow)
with moderate decrease in visual acuity. (Row 1, inner left) Left eye color fundus photograph,
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pale optic disc, narrow blood vessels, pigmentary changes in the periphery and RPE changes
in the macular region (arrow) correlated with severe loss of visual acuity at counting fingers
(CF). (Row 1, inner right) Left eye colour fundus photographs, there are a few small spots of
atrophy in retinal periphery and the macula appears normal. (Row 1, outer right, and row 2
outer left) Colour fundus photographs from two affected brothers, with, for the left eye of the
patient I1:3, round foveal atrophy and pigment deposits covering a large proportion of the
fundus while for the right eye of the patient I1:2, most of the retinal atrophy and pigment
deposits are present in the macular area. (Row 2, inner left to outer right) FAF and OCT of
right eyes from two sisters, with for patient I11:2, a pericentral form of retinitis pigmentosa
with alteration of autofluorescence within the macular area and sharp limit of the lesions
(arrows) while the sister III:1 has a typical widespread retinitis pigmentosa showing small
spots of retinal atrophy (stars) and a ring of autofluorescence (white arrow); OCT scans of the
macula in both sisters show a conserved inner segment/outer segment line (stars) in the fovea.
(Row 3, outer left and inner left) The mother IV:4 has retinitis pigmentosa with pigment
deposits in retinal periphery while the son V:1 has a foveal yellow vitelliform deposit (arrow)
but no retinitis pigmentosa. (Row 3, inner right to row 4, inner left) FAF imaging in 4
members of the PHRC161 family; the youngest member IV:4 has no retinal alteration, the
member I1I:2 has many round spots of loss of autofluorescence beyond the macula (arrow)
but the macula is normal, the member I11:4 has a similar aspect to III:2 but there is a ring of
autofluorescence around the fovea with moderate decrease of visual acuity, the oldest member
I1:2 has a complete loss of autofluorescence except for an open ring of remaining retina
around the foveal area (arrow) and visual acuity reduced to hand motion (HM). (Row 4, inner
right and outer right) Fundus photographs of the daughter I1:5 show retinal lesion and slightly
reduced retinal vessel diameter while fundus photographs of the mother I1I:3 revealed
changes typical of retinitis pigmentosa with overall moderate RPE changes and attenuated
retinal vessels but no pigment deposits.

Figure 7: Variability of electroretinographic responses in family PHRC162 with
autosomal dominant retinitis pigmentosa and with the PRPH?2 gene mutation
p.-Leu254Gln

Each patient from generation Il in PHRC162 was subjected to dark-adapted dim blue
stimulation for rod responses and light-adapted 30 Hz flicker for cone responses. Black
symbols indicate symptomatic patients, open symbols non affected or asymptomatic patients.
Genotypes are shown. The 4 affected patients (II:3, 11:7, I1:12 and 1I:13) have no rod
responses and severely decreased cone responses, while the asymptomatic carrier I1:9 still has
rod responses, although decreased in comparison to normal responses in I1:4, II:5, I1:6 and
I1:8.

Figure 8: Summary of the novel mutations found in this study in peripherin-2 protein
and in patients with autosomal dominant retinitis pigmentosa

Schematic representation of the peripherin-2 protein showing the location of the six novel
mutations presented in this study. The four transmembrane o-helices and the two intradiscal
loop domains D1 and D2 are schematized.
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Table 1. Summary of PRPH?2 gene mutations identified in this study in patients with autosomal dominant retinitis pigmentosa

Nucleotide change Exon  Protein change Region  PolyPhen2 SIFT a-GVGD EVS Reference
¢.136C>T 1 p.Argd6* D1 N.A. N.A. NA. 0/13,006 *
c.205delG 1 p-Val69Cysfs*30 2" TMD N.A. N.A. N.A. 0/13,006 Present study
¢.377T>C 1 p.Leul26Pro D2 Prob. APF  C65 0/13,006
c.494G>A 1 p.Cys165Tyr D2 Prob. APF  C65 0/13,006 '
¢.535T>C 1 p.Trpl79Arg D2 Prob. APF  C65 0/13,006 **
c.582T>A 2 p.Asp194Glu D2 Pos. TOL C(C35 0/13,006 Present study
.594C>G 2 p.Ser198Arg D2 Prob. APF  C65 0/13,006 *
c.623G>A 2 p.Gly208Asp D2 Pos. APF (65 1/13,006 **
c.631T>C 2 p.Phe211Leu D2 Prob. APF Cl15 0/13,006
.646C>T 2 p.Pro216Ser D2 Pos. TOL C65 0/13,006 **
c.664T>A 2 p.Cys222Ser D2 Prob. APF (65 0/13,006 *°
¢.738G>C 2 p. Trp246Cys D2 Prob. APF C65 0/13,006 Present study
c.758C>A 2 p-Ala253Glu D2 Prob. TOL C65 0/13,006 Present study
c.761T>A 2 p.Leu254GlIn D2 Prob. APF  C65 0/13,006 Present study
¢.829-4C>G Int, 2.3 Splice site defect 4"TMD N.A. NA. NA.  0/13,006 Present study

(p.Glu276 Val277insGln)

D1: D1 loop; D2: D2 loop; TMD: transmembrane helical domain; N.A.: Not applicable; Int.: intron; EVS: Exome variant server. PolyPhen2:
Pos. for possibly damaging, Prob. for probably damaging. SIFT: TOL for tolerated, APF for affect protein function. a-GVGD scores amino acid
substitutions on a 7-scale scoring system, from CO (neutral) to C65 (the most likely pathogenic), and C35 is considered intermediate.
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Table 2: Frequency of clinical features in patients with autosomal dominant retinitis pigmentosa and PRPH?2 gene mutation

Description Mean age Number of patients Percentage of positive cases
Pigment deposits 45+ 18 37 73.0%
Autofluorescence changes 47 + 18 35 62.9%
Cystoic macular edema 43 +17 28 14.3%
Conserved elipsoid zone 43+ 17 27 70.4%
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