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ABSTRACT 

Purpose: To assess the prevalence of PRPH2 in autosomal dominant retinitis pigmentosa 

(adRP), to report six novel mutations, to characterize the biochemical features of a recurrent 

novel mutation and to study the clinical features of adRP patients. 

Design: Retrospective clinical and molecular genetic study. 

Methods: Clinical investigations included visual field testing, fundus examination, high-

resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence 

imaging and electroretinogram (ERG) recording. PRPH2 was screened by Sanger sequencing 

in a cohort of 310 French families with adRP. Peripherin-2 protein was produced in yeast and 

analyzed by Western blot. 

Results: We identified 15 mutations, including 6 novel and 9 previously reported changes in 

32 families, accounting for a prevalence of 10.3% in this adRP population. We showed that a 

new recurrent p.Leu254Gln mutation leads to protein aggregation, suggesting abnormal 

folding. The clinical severity of the disease in examined patients was moderate with 78% of 

the eyes having 1 to 0.5 of visual acuity and 52% of the eyes retaining more than 50% of the 

visual field. Some patients characteristically showed vitelliform deposits or macular 

involvement. In some families, pericentral RP or macular dystrophy were found in family 

members while widespread RP was present in other members of the same families. 

Conclusions: The mutations in PRPH2 account for 10.3% of adRP in the French population, 

which is higher than previously reported (0-8%) This makes PRPH2 the second most frequent 

adRP gene after RHO in our series. PRPH2 mutations cause highly variable phenotypes and 

moderate forms of adRP, including mild cases which could be underdiagnosed. 
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INTRODUCTION 

In the retina, the human peripherin-2 gene (PRPH2; MIM #179605), also known as RDS

(retinal degeneration slow) encodes Peripherin-2, a transmembrane glycoprotein localized in 

the rim regions of photoreceptor outer segment discs.
1–3

 Peripherin-2 forms homo- and 

hetero-tetramers with its paralog protein ROM1 (retinal outer segment membrane protein 1; 

MIM #180721). These oligomers are essential for the stabilization of the disc rims and are 

required to pile up the discs as compact, elongated structures.
4–8

 Mutations in PRPH2 cause a 

wide range of autosomal dominant retinal dystrophies, either with involvement of the 

peripheral retina such as retinitis pigmentosa,
9
 cone-rod dystrophy

10,11
 and even one case of 

retinitis punctata albescens,
12

 or with predominant involvement of the macula such as adult 

vitelliform macular dystrophy,
13

 cone dystrophy,
14

pattern dystrophy,
15,16

 and central areolar 

choroidal atrophy.
17–20

 In addition, the PRPH2 p.Leu185Pro substitution has also been 

associated with ROM1 mutations in a digenic form of retinitis pigmentosa.
21,22

Among the variety of retinal degenerations caused by PRPH2 mutations, autosomal dominant 

retinitis pigmentosa (adRP) is the most frequent condition. Typical symptoms of RP include 

night blindness, progressive visual field constriction, eventually progressing towards total 

blindness after several decades.
23

 The prevalence of RP is approximately 1/3,500 to 1/4,000 

and the mode of inheritance can be autosomal dominant (30-40%), autosomal recessive (50-

60%) or X-linked (5-15%).
23,24

 RP is the most genetically heterogeneous clinical entity of 

inherited retinal disorders with 69 disease-causing genes currently known in this condition 

(www.sph.uth.tmc.edu/retnet) including 24 genes causing adRP. The prevalence of the known 

genes in adRP ranges from 26.5%
25,26

 to 16.6%
27

 for the most frequently found mutations in 

RHO (MIM #180380), to many genes accounting for less than 1% of the adRP families. 

Among those genes, the prevalence of PRPH2 mutations varies widely from 0% to 8% of the 

cases of adRP in cohorts of different origins but no accurate prevalence data are available for 

the French population.
28–30

 Also, as usually found in adRP, the severity of the PRPH2 genetic 

form is considered as moderate, but it is not known whether or not there are important 

variations of severity inside the PRPH2 genetic category. Therefore, we sought for PRPH2

mutations in a large cohort of 310 adRP families originating mainly from France. We found 

novel mutations, characterized the biochemical features of one novel mutation and we 

analyzed the clinical features of the affected patients. 

METHODS: 

Patients 

Three hundred and ten index patients were included in the study. Informed and written 

consent was obtained for all patients participating to the study. Patients of European origins 

were recruited from 10 different clinical centers in France. The study (# 2008-A01238-47) 

received the authorization from the Sud méditerranée IV ethical board committee (# 08 10 05 

from 04/11/2008), was approved by the French regulation agency for medication (AFSSAPS 

# B81319-70) and is registered at http://clinicaltrials.gov (# NCT01235624). The investigators 

followed the tenets of the Declaration of Helsinki. 

Clinical investigations 

Patients had standard ophthalmologic examination (refractometry, visual acuity, slit-lamp 

examination, applanation tonometry, and funduscopy). Kinetic visual fields were determined 

with a Goldmann perimeter with targets V4e, III4e and I4e. OCT measurement of the macula 

was performed using an OCT-3 system (Stratus model 3000, Carl Zeiss Meditec, CA) or with 

a spectral domain OCT (Spectralis, Heidelberg, Germany) with the software version 3.0. 

Autofluorescence measurements were obtained with the HRA2 Heidelberg retinal confocal 
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angiograph (Heidelberg Engineering, Dossenheim, Germany) and fundus pictures were taken. 

Full-fields ERGs were recorded using a Ganzfeld apparatus (Metrovision, Pérenchies, France) 

with a bipolar contact lens electrode on maximally dilated pupils according to the ISCEV 

protocol.
31

For numerical values, visual acuity was measured with Snellen charts in decimal numbers. 

Goldmann visual field was quantified by counting the number of subdivisions of the 

Goldmann grid within the areas of the V4e isopter and expressed as a percentage of the 

normal visual field. Correlations between visual parameters (visual acuity, visual field and 

ERG amplitudes) and age were investigated with the coefficient correlation of ranks of 

Spearman with a confidence interval at 95%, calculated by a Fisher transformation. 

Mutation screening 

Genomic DNA was isolated from 10 ml peripheral blood leucocytes using standard salting 

out procedure.
32

 Coding exons and adjacent intronic sequences of the PRPH2 gene 

(NM_000322.4; primer pairs and PCR conditions are available on request) were sequenced 

with an Applied Biosystems 3130xL genetic analyser (Applied Biosystems, Foster City, CA) 

using a BigDye Terminator cycle sequencing ready reaction kit V3.1 (Applied Biosystems, 

Foster City, CA) following manufacturer’s instructions. Sequence analysis and mutation 

identification were performed using Collection and Sequence Analysis software package 

(Applied Biosystems, Foster City, CA). SIFT, PolyPhen2 and Align GVGD were used to 

predict possible impacts of missense variants. The genomic sequence environment of putative 

splice-site mutations was analyzed using Human Splicing Finder and MaxEnt.

Genotyping of microsatellite markers and linkage analysis 

PCR was carried out in a 25 �l final volume containing 50 ng genomic DNA, 5 pmol of each 

primer, 0.2 mM dNTPs (MP Biochemicals, Asse-Relegen, Belgium), 2 mM MgCl2, PCR 

buffer and 1 unit of DNA polymerase (AmpliTaq Gold; Applied Biosystems, Foster City, 

CA). Initial denaturation at 95°C for 10 minutes was followed by 35 cycles of denaturation at 

94°C for 30 seconds, specific annealing temperature for 30 seconds, and extension at 72°C for 

1 minute. A final extension step was performed at 72°C for 10 minutes. The PCR products 

were diluted and mixed with Genescan 400HD ROX size standard and subsequently analyzed 

on an Applied Biosystems 3130xL genetic analyzer (Applied Biosystems, Foster City, CA). 

Results were analyzed with GeneMapper software (version 4.0, Applied Biosystems, Foster 

City, CA). 

Two-point LOD scores were calculated with Superlink-online 

(http://bioinfo.cs.technion.ac.il/superlink-online/). The phenotype was analyzed as an 

autosomal dominant and fully penetrant trait with an affected allele frequency of 0.001. 

Peripherin-2 expression and Western blots 

Wild type (WT) and p.Leu254Gln (L254Q) mutant were cloned into the pPICZ expression 

vector containing the c-myc epitope and the polyhistidine (His)6-tag as described before,
33

 the 

nucleotide sequence was confirmed by Eurofins MWG using automated DNA sequencing. 

Pichia pastoris cells (strain KM71H) were transformed with the PmeI linearised expression 

vector, stably transformed cells were spread on YPD plates [1% yeast extract, 2% peptone 

(BD), 2% glucose, 2% agar] with media containing 100 µg/ml zeocin. Cells were cultured, 

harvested, and stored at -80°C as described before.
33

 Cells were lysed upon further processing 

and membranes containing the WT or L254Q proteins were isolated using differential 

centrifugation as described previously. The membranes were dissolved in 1% n-dodecyl-β-D-

maltoside (DDM) using sequentially an 18G, 19G, and 25G needle. His-tagged WT or L254Q 

proteins were purified using Ni-NTA agarose (final buffer 10 mM NaPO4, 150 mM NaCl, 
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200 mM imidazole, and 0.1% n-dodecyl-β-D-maltoside). Reducing SDS-PAGE was 

performed by mixing 1:1 (v:v) with 2x loading buffer containing 1% β-mercaptoethanol and 

incubated for 5 minutes at room temperature prior to loading of the gel. Non-reducing SDS-

PAGE was performed by mixing 1:1 (v:v) with 2x loading buffer without β-mercaptoethanol 

and immediate loading after mixing. Transfer to the PVDF membrane and probing – using 

cmyc-tagged murine monoclonal (Cell Signaling Technology, Danvers, MA) as primary and 

anti-mouse HRP-conjugated (Promega, Fitchburg, WI) as secondary antibody – was done as 

described before. 

RESULTS 

Identification of recurrent and novel PRPH2 mutations 

A cohort of 310 French families with autosomal dominant retinitis pigmentosa (adRP) was 

screened for the three exons of the PRPH2 gene (NM_000322.4). We found that 32 probands 

(10.3%) carried a mutation. A total of 15 different mutations were identified (Table 1). Nine 

of them were previously described including one nonsense (p.Arg46*) and eight missense 

mutations (p.Leu126Pro, p.Cys165Tyr, p.Trp179Arg, p.Ser198Arg, p.Gly208Asp, 

p.Phe211Leu, p.Pro216Ser and p.Cys222Ser). Six others were novel including four missense 

(p.Asp194Glu, p.Trp246Cys, p.Ala253Glu and p.Leu254Gln), one frameshift 

(p.Val69Cysfs*30) and one splice site (c.829-4C>G) mutations. All mutations co-segregated 

with the disease phenotype in available family members (Figure 1, 2). The novel mutations 

were not identified in 96 ethnically matched control individuals and were not present in the 

public human SNP databases (including dbSNP, Ensembl, HapMap, the 1000 Genomes 

project and Exome Variant Server). 

Among the novel mutations, the truncating p.Val69Cysfs*30 mutation led to a premature 

termination located within the second transmembrane α-helix of peripherin-2. No affected 

family members were available to test the familial segregation for the p.Asp194Glu mutation 

(Figure 2, bottom right), but Asp194 is conserved in 16 peripherin-2 orthologs (Figure 3) and 

is surrounded by residues Lys193 and Arg195 which have been found mutated previously.
20,34

Moreover, the substitution p.Asp194Glu was predicted to be damaging by PolyPhen2 and 

align-GVGD programs but not by SIFT (Table 1). For the mutations p.Trp246Cys and 

p.Ala253Glu, both residues at positions 246 and 253 are also evolutionary conserved (Figure 

3) and Trp246 has been previously found mutated in p.Trp246Arg.
35

 These two mutations 

were predicted to be damaging by PolyPhen2, align-GVGD and SIFT but tolerated by SIFT 

for p.Ala253Glu (Table 1). 

We identified four families (PHRC057, PHRC069, PHRC161 and PHRC162) with the novel 

missense mutation, c.761T>A (p.Leu254Gln), with all affected subjects heterozygous for the 

mutation except two homozygous brothers (II:2 and II:3) in family PHRC161. These two 

subjects had presumed consanguineous parents, while unaffected individuals did not carry the 

mutation (Figure 2, left). The evolutionary conserved Leu254 is located in the D2 loop 

(Figures 3 and 8) and the substitution p.Leu254Gln is predicted to be damaging by 

PolyPhen2, SIFT and align-GVGD programs (Table 1). In order to investigate whether 

p.Leu254Gln was a founder mutation, we genotyped the microsatellite markers D6S1575, 

D6S1549, D6S1552, D6S282 and D6S1650 that spanned the 2.98 Mb surrounding PRPH2 in 

the available DNA samples in the 4 families. We found that all affected members of the four 

families shared an identical allele for the five markers, except patient II:2 of family PHRC161 

who had a cross over between D6S1552 and D6S1549 (Figure 2, left). Since the four families 

originated from the same area in the south of France, this indicates a founder effect. We 

confirmed the linkage at this locus with microsatellite markers reaching a maximum 
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cumulated LOD score of 4.484 for D6S1575 (Figure 2, left). Since many patients carried the 

p.Leu254Gln, we performed biochemical investigations of the mutated peripherin-2. The wild 

type (WT) and the mutated L254Q peripherin-2 proteins were expressed in yeast. We found 

that both purified WT and L254Q mutant showed monomers and formed dimers (Figure 4). 

However, aggregates, which were present in both wild type and mutated protein extracts, 

were much more abundant with the L254Q mutant. In addition, in the absence of the reducing 

agent β-mercaptoethanol in the sample buffer, the amounts of monomeric and dimeric L254Q 

were dramatically decreased compared to the WT. Thus, the L254Q mutant exhibited a strong 

tendency to form large aggregates which might suggests abnormal folding for L254Q mutant. 

Five independent families (PHRC011, PHRC084, PHRC197, PHRC276 and Fam716) had the 

c.829-4C>G mutation (Figure 2, top right). Two algorithms (Human Splicing Finder and 

MaxEnt) predicted that the c.829-4C>G mutation would create an acceptor splice site located 

three base pair upstream the natural splice site and lead to the in-frame insertion of one 

glutamine between amino acids 276 and 277 (p.Glu276_Val277insGln) in the fourth 

transmembrane α-helix of peripherin-2 (Figure 8). In four of the five families where several 

family members were available, the mutation was found to co-segregate with the disease. 

Only individual IV:2 of the family PHRC197 harbored the mutation and was presumed to be 

unaffected but he was never examined. No common haplotype for five microsatellite markers 

(D6S1575, D6S1549, D6S1552, D6S282, and D6S1650) surrounding PRPH2 was found (data 

not shown) and the families were not originating from the same area suggesting that c.829-

4C>G could be a mutation hot spot. 

Clinical characterization of patients with PRPH2 mutations

From 27 to 67 patients were available for clinical analysis, depending on the type of 

examination. On average, the age at presentation was 45.2 + 17.5 (n=44, range 13-78). The 

initial symptom was night blindness with an apparent age of onset at 30.8 + 13.8 (n=29, range 

10-57). Almost half the patients (31/67, 46%) were emmetropic (spherical equivalent -1 to 

+1), 36% were myopic (SE < -1) and 18% were hypermetropic (SE > +1), showing a skew 

toward moderate myopia (Figure 5, top row, left). 

We found that the cataract, typically present in adult patients with retinitis pigmentosa, was 

encountered mostly in patients older than 40 (Figure 5, top row, right). The visual acuity was 

variable with age (Figure 5, middle row, left), 29/81 (35.8%) eyes having a normal visual 

acuity (VA=1) in patients aged 32.3 + 15.2 (range 13 to 61), 34/81 (42.0%) eyes having a 

moderately decreased VA (0.9-0.5) in patients aged 47.9 + 15.4 (range 29 to 78), and 18/81 

(22.2%) eyes having a severely decreased VA (< 0.4) in patients aged 61.2 + 6.4 (range 43 to 

72). The decrease in VA was significantly correlated with age (r = -0.64; p < 0.001). The 

visual field also decreased progressively with age (Figure 5, middle row, right). We found 

that 32/62 patients (51.6%) kept more than 50% of their visual field, being aged 37.7 + 13.9 

(range 16 to 59), while 30/62 (48.4%) had lost more than 50%, being aged 54.8 + 17.6 (range 

16 to 78). The decrease in visual field was significantly correlated with age (r = -0.56; p < 

0.001). The rod ERG (dim blue) was recordable (b wave > 10 µV) in 26/60 (43.3%) eyes 

from patients aged 34.2 + 16.8 (range 16 to 61) and was undetectable in 34/60 (56.7%) eyes 

from patients aged 54.2 + 11.5 (range 35 to 78) (Figure 5, bottom row, left). The cone ERG 

(30 Hz flicker) was recordable (b wave amplitude > 5 µV) in 49/54 (90.7%) eyes from 

patients aged 43.9 + 18.5 (range 16 to 78) and was undetectable in 5/54 (10.3%) eyes from 

patients aged 52.4 + 6.8 (range 45 to 58) (Figure 5, bottom row, right). Both the rod and the 

cone ERG decrease was correlated with age, r = -0.62 and -0.44; p < 0.001 for rod and cone 

function, respectively. 
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Fundus examination revealed the presence of pigment deposits in 73% of the patients with a 

mean age 45 + 18. Fundus autofluorescence imaging revealed abnormalities in 62.9% (age 47 

+ 18) including macular autofluorescence ring, atrophic spots in periphery (Table 2). On OCT 

examination, the majority of patients retained their elipsoid zone at the fovea (70.4%) 

whereas a minority had a cystoid macular edema (14.3%). We noticed that some patients had 

macular involvement with either normal, moderately reduced (Figure 6, row 1, outer left) or 

severely decreased (Figure 6, row 1, inner left) visual acuity. Some patients had a mild RP 

with a few spots of atrophy in retinal periphery and macular sparing (Figure 6, row 1, inner 

right). In other cases, typical pigment deposits and widespread atrophy in the mid peripheral 

retina was present (Figure 6, row 1, outer right). Some patients showed a pericentral 

localization of the retinal lesions even if other members of the family had a widespread form 

(Figure 6, row 2, outer left). This was particularly evident in family PHRC281 carrying the 

p.Pro216Ser (Figure 6, row 2, inner left to outer right) in which a family member (III:2) had a 

pericentral localization of the retinal lesions sharply delimited from the unaffected peripheral 

retina while her sister (III:1) had a typical widespread retinitis pigmentosa. In a few 

circumstances, the presence of yellow deposits was noticed, as in family PHRC305 carrying 

the p.Pro216Ser, in which the mother had typical retinitis pigmentosa (Figure 6, row 3, outer 

left) and the son a vitelliform foveal deposit but no signs of retinitis pigmentosa (Figure 6, 

row 3, inner left). 

More clinical details were obtained for the two novel recurrent mutations c.761T>A 

(p.Leu254Gln) and c.829-4C>G (p.Glu276_Val277insGln) found in four and five families, 

respectively. In the family PHRC161 with p.Leu254Gln, the visual acuity of the two brothers 

homozygous for the mutation was severely decreased with 0.1 at age 63 for patient II:3 and 

hand motion on left eye and light perception on right eye at age 71 for patient II:2. Yet, 

patient II:3 still had 0.9 on the left eye at age 53, indicating that homozygosity for the 

mutation did not lead to early onset severe disease. In general, clinical examination showed a 

progressive worsening of the visual function with age with the youngest patients being pauci-

symptomatic (Figure 6, row 3, inner right) until the legal blindness stage in elder patients 

(Figure 6 row 3, outer right to row 4, inner left). In the family PHRC162 with p.Leu254Gln, 

variability in electroretinogram responses was noticed. Patient II:9 who carried the mutation 

still had a recordable scotopic rod ERG response and was asymptomatic while other mutation 

carriers of the family had undetectable scotopic ERG rod responses (Figure 7). In the five 

families with c.829-4C>G (p.Glu276_Val277insGln), the disease was very moderate, the 

fundus observation being normal (Figure 6, row 4, inner right) or with moderate lesions 

(Figure 6, row 4, outer right) and the ERG responses being recordable, suggesting that the 

insertion of an additional amino acid had a moderate pathogenic effect. 

DISCUSSION 

Autosomal dominant retinitis pigmentosa (adRP) is genetically heterogeneous with 24 known 

causatives genes so far (www.sph.uth.tmc.edu/retnet). The present study assessed the 

prevalence of PRPH2, one of the major genes mutated in adRP, in a large French cohort of 

310 families. We established the prevalence for PRPH2 as 10.3% in our cohort making this 

gene, after RHO (16.5% in French population
27

), the second gene most frequently found 

mutated in French adRP patients. Therefore, both genes account for more than a quarter 

(26.8%) of adRP cases in France. Prevalence studies conducted in the French population 

revealed that PRPF31 (MIM #606419) with 6.7%
36

 and RP1 (MIM #603937) with 5.3%
37

 are 

respectively the third and fourth causatives genes. Altogether, these four genes represent 

38.8% of French adRP patients. 
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Based on the literature, the prevalence of PRPH2 mutations ranges from 0% to 8% of cases of 

adRP in cohorts of different origins. Mutations in the PRPH2 gene appear to be rare in 

Southern European adRP patients: 0% (0/48) in Italian
30

 and 1% (2/148) in Spanish
38

 patients 

with adRP. In comparison, the proportion of adRP due to PRPH2 mutations is higher in 

populations with Northern European or Asian origins: 3.5% of Northern American population 

with altogether dominant and recessive RP (8/227)
21

, in 5% of Japanese adRP cases (5/96)
9
,

in 8% of American (17/206)
29

, and Swedish (3/38)
28

 adRP patients. With a prevalence of 

10.3% in our cohort, it is higher in France than usually reported, possibly because of 

underdiagnosed family members with mild disease that we describe in this study, leading to 

erroneously classify them as simplex cases. We found indeed that some cases presented as 

pericentral forms of RP, and other cases are asymptomatic or pauci-symptomatic. In general, 

we found that the RP associated with PRPH2 mutations is not severe, with many patients 

retaining useful visual acuity and visual field at middle age. There is no specific refractive 

error, which distinguishes this RP from the X-linked RP in which myopia is consistently 

found.
39

This study reports 15 different mutations in PRPH2 found in 32 families from a cohort of 310 

families with adRP; of these, six are novel and nine were previously reported (Table 1). The 

referenced mutations, represent 60% of the mutations identified in this report. Nevertheless, 

with 40% of novel mutations, it is still worth to screen the whole PRPH2 gene for novel 

changes. 

Among the novel mutation, the deletion c.205delG leads to a premature stop shortening the 

protein to 98 residues instead of 346 amino acids (p.Val69Cysfs*30) and the truncation 

affects the second transmembrane α-helix of peripherin-2 (Figure 8) or, more likely, is a 

functional null allele. To date, 42 truncating mutations including nonsense substitutions and 

frameshift mutations are listed at the Human Genome Mutation Database (HGMD). Although 

no DNA samples from additional affected family members were available for segregation 

analysis, it is likely that the truncating change presented in this study is a pathogenic mutation 

and causes the RP phenotype in family PHRC126. 

The four novel missense changes identified in this study affect evolutionary conserved amino 

acids (Figure 3), and are located in the large intradiscal loop domain (D2) of peripherin-2 

(Figure 8), which contains most disease-causing missense mutations.
40

 To date, 124 PRPH2

mutations are listed at the HGMD and approximately 65% of them are located in the D2 loop 

of the protein emphasizing the importance of this domain. This D2 loop plays a crucial role in 

the dimerization of homo- or hetero-tetramers with ROM1 (retinal outer segment membrane 

protein 1), the homolog of peripherin-2, to form essential interactions important for disc 

formation and stabilization.
4–8

 The p.Leu254Gln substitution appears to be recurrent in the 

French population since it was found in four unrelated families with the same geographic 

origin. All the affected patients harboring the mutation share the same haplotype for five 

surrounding microsatellite markers (maximum cumulated LOD score of 4.484 for D6S1575) 

suggesting a founder effect. Two affected brothers (Figure 2, left, II:2 and II:3 in family 

PHRC161) were homozygous for the mutation and were expected to display a more severe 

phenotype, although this did not seem obvious from clinical records. It is of note that mice 

with a heterozygous defect in Prph2 present a loss of photoreceptor outer segments 

organization while homozygous mice have no outer segments.
41,42

 Contrary to the null 

mutation presents in mice, the p.Leu254Gln mutation probably acts through a dominant-

negative effect by interfering with the dimerization process. The wild type (WT) and mutant 
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(L254Q) peripherin-2 expressed in yeast (Figure 4) migrate as monomers and dimers, but the 

mutant peripherin-2 shows a pronounced tendency relative to WT to form larger aggregates. 

This might suggest an abnormal folding for the L254Q mutant. The increased aggregation 

may disturb homo- and hetero-tetramers with ROM1 interactions, leading to a loss of some 

peripherin-2 function. 

All novel mutations identified in this study were located either in the D2 loop or truncated the 

protein before the D2 loop. Nevertheless, one mutation (c.829-4C>G), which was predicted to 

lead to the in-frame insertion of one glutamine (p.Glu276_Val277insGln) was located in the 

fourth transmembrane α-helix of peripherin-2 (Figure 8). Three other mutations, within this 

last transmembrane α-helix, are mentioned in the literature; the mutation p.Gly266Asp was 

found in an adRP patient,
43

 the mutation p.Val268Ile was found in a patient with adult 

vitelliform macular dystrophy
13

 and the in-frame deletion p.Leu271del was identified in a 

simplex RP patient.
44

 The Glu276 residue is conserved in all known peripherin-2 orthologs 

and is substituted with a glutamine in all known ROM1 orthologs.
45

 The significance of this 

highly conserved glutamic acid at position 276 was investigated for peripherin-2 structure and 

function.
46

 The authors created a p.Glu276Gln isosteric substitution, very similar to the 

p.Glu276_Val277insGln predicted mutation found in our study, and they demonstrated that 

this conserved residue is critical for outer segment discs morphogenesis. The major 

physicochemical consequence of the p.Glu276Gln substitution is a loss of ionization 

potential. They hypothesized that Glu276 may function as a pH sensor to regulate protein 

activity. Other studies suggest that Glu276 may be important for intramolecular interactions 

between transmembrane domains.
47,48

In conclusion, we have established that the prevalence of PRPH2 is 10.3% in a French cohort 

of 310 adRP individuals which is higher than previously reported. We also established that 

PRPH2 cause highly variable phenotypes and moderate forms of adRP, including mild cases 

which could be underdiagnosed. Moreover, mutation analysis in a large cohort is important 

for the design of future clinical trials. 
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FIGURE LEGENDS 

Figure 1: Pedigrees of French families with autosomal dominant retinitis pigmentosa 

and with recurrent mutations in PRPH2 gene identified in this study 

Filled symbols indicate affected family members; squares: males; circles: females; arrows: 

index patients. (Top left) Family pedigrees of patients showing different recurrent PRPH2

mutations. (Top middle) Families with c.136C>T (p.Arg46*) mutation. (Top right) Families 

with c.494G>A (p.Cys165Tyr) mutation. (Middle left) Families with c.631T>C 

(p.Phe211Leu) mutation. (Bottom left) Families with c.594C>G (p.Ser198Arg) mutation. 

(Bottom middle) Families with c.535T>C (p.Trp179Arg) mutation. (Bottom right) Families 

with c.646C>T (p.Pro216Ser) mutation. 

Figure 2: Pedigrees of French families with autosomal dominant retinitis pigmentosa 

and with novel mutations in PRPH2 gene identified in this study 

(Left) Haplotypes at the PRPH2 locus of four families showing the c.761T>A (p.Leu254Gln) 

mutation and surrounding microsatellite markers. The common haplotype is shown in black. 

(Top right) Five families with c.829-4C>G splice site mutation. (Bottom right) Family 

pedigrees of patients showing different novel PRPH2 mutations. 

Figure 3: Conservation of amino acids affected by novel PRPH2 missense mutations 

identified in this study in patients with autosomal dominant retinitis pigmentosa. 

Multiple amino acid sequence alignment of peripherin-2 for a region surrounding the novel 

p.Asp194Glu, p.Trp246Cys, p.Ala253Glu and p.Leu254Gln missense mutations. The site of 

the mutation is indicated by an arrowhead. 

Figure 4: Western blot analysis of wild type and p.Leu254Gln mutant peripherin-2 

protein produced in yeast 

Western blots of the wild type (WT) and the mutated p.Leu254Gln (L254Q) peripherin-2 

from P. pastoris purified with Ni-NTA superflow agarose in the presence (+) or in the 

absence (-) of the reducing agent β-mercaptoethanol (β-M) in the sample buffer. The blot was 

probed with a monoclonal anti-c-myc antibody. 

Figure 5: Clinical data of the patients with autosomal dominant retinitis pigmentosa and 

with PRPH2 gene mutations 

(Top row, left) Refractive errors were classified in 5 groups as either severe myopia (< -3[), 

moderate myopia ([-3;-1[), emmetropia ([-1;+1]), moderate hyperopia (]+1;+3]) or severe 

hyperopia (>+3[) and the percentage (y-axis) and the absolute number (above each bar) of 

patients are given for each group. (Top row, right) Apparent onset of cataract was classified in 

4 groups depending on age and the percentage (y-axis) and the absolute number (above each 

bar) of patients are given for each group. Visual acuity in decimal values (Middle row, left), 

percentage of remaining Goldman visual field (Middle row, right), b-wave amplitude of the 

dim blue electroretinogram (ERG) testing rods (Bottom row, left) and peak-to-peak amplitude 

of the 30 Hz flicker ERG testing cone function (Bottom row, right) were plotted against age. 

Figure 6: Fundus imaging of patients with autosomal dominant retinitis pigmentosa and 

with PRPH2 gene mutations 

On top of each picture, (fundus photographs, fundus autofluorescence (FAF) photographs and 

spectral-domain optical coherence tomography (OCT) scans), the family number (PHRC), the 

patient number in the family, the age, the visual acuity in decimal values are indicated. (Row 

1, outer left) Left eye FAF, macular alteration, parafoveal loss of autofluorescence (arrow) 

with moderate decrease in visual acuity. (Row 1, inner left) Left eye color fundus photograph, 
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pale optic disc, narrow blood vessels, pigmentary changes in the periphery and RPE changes 

in the macular region (arrow) correlated with severe loss of visual acuity at counting fingers 

(CF). (Row 1, inner right) Left eye colour fundus photographs, there are a few small spots of 

atrophy in retinal periphery and the macula appears normal. (Row 1, outer right, and row 2 

outer left) Colour fundus photographs from two affected brothers, with, for the left eye of the 

patient II:3, round foveal atrophy and pigment deposits covering a large proportion of the 

fundus while for the right eye of the patient II:2, most of the retinal atrophy and pigment 

deposits are present in the macular area. (Row 2, inner left to outer right) FAF and OCT of 

right eyes from two sisters, with for patient III:2, a pericentral form of retinitis pigmentosa 

with alteration of autofluorescence within the macular area and sharp limit of the lesions 

(arrows) while the sister III:1 has a typical widespread retinitis pigmentosa showing small 

spots of retinal atrophy (stars) and a ring of autofluorescence (white arrow); OCT scans of the 

macula in both sisters show a conserved inner segment/outer segment line (stars) in the fovea.

(Row 3, outer left and inner left) The mother IV:4 has retinitis pigmentosa with pigment 

deposits in retinal periphery while the son V:1 has a foveal yellow vitelliform deposit (arrow) 

but no retinitis pigmentosa. (Row 3, inner right to row 4, inner left) FAF imaging in 4 

members of the PHRC161 family; the youngest member IV:4 has no retinal alteration, the 

member III:2 has many round spots of loss of autofluorescence beyond the macula (arrow) 

but the macula is normal, the member III:4 has a similar aspect to III:2 but there is a ring of 

autofluorescence around the fovea with moderate decrease of visual acuity, the oldest member 

II:2 has a complete loss of autofluorescence except for an open ring of remaining retina 

around the foveal area (arrow) and visual acuity reduced to hand motion (HM). (Row 4, inner 

right and outer right) Fundus photographs of the daughter II:5 show retinal lesion and slightly 

reduced retinal vessel diameter while fundus photographs of the mother III:3 revealed 

changes typical of retinitis pigmentosa with overall moderate RPE changes and attenuated 

retinal vessels but no pigment deposits. 

Figure 7: Variability of electroretinographic responses in family PHRC162 with 

autosomal dominant retinitis pigmentosa and with the PRPH2 gene mutation 

p.Leu254Gln 

Each patient from generation II in PHRC162 was subjected to dark-adapted dim blue 

stimulation for rod responses and light-adapted 30 Hz flicker for cone responses. Black 

symbols indicate symptomatic patients, open symbols non affected or asymptomatic patients. 

Genotypes are shown. The 4 affected patients (II:3, II:7, II:12 and II:13) have no rod 

responses and severely decreased cone responses, while the asymptomatic carrier II:9 still has 

rod responses, although decreased in comparison to normal responses in II:4, II:5, II:6 and 

II:8. 

Figure 8: Summary of the novel mutations found in this study in peripherin-2 protein 

and in patients with autosomal dominant retinitis pigmentosa 

Schematic representation of the peripherin-2 protein showing the location of the six novel 

mutations presented in this study. The four transmembrane α-helices and the two intradiscal 

loop domains D1 and D2 are schematized.
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Table 1. Summary of PRPH2 gene mutations identified in this study in patients with autosomal dominant retinitis pigmentosa 

Nucleotide change Exon Protein change Region PolyPhen2 SIFT a-GVGD EVS Reference 

c.136C>T 1 p.Arg46* D1 N.A. N.A. N.A. 0/13,006 
49

c.205delG 1 p.Val69Cysfs*30 2
nd

 TMD N.A. N.A. N.A. 0/13,006 Present study 

c.377T>C 1 p.Leu126Pro D2 Prob. APF C65 0/13,006 
50

c.494G>A 1 p.Cys165Tyr D2 Prob. APF C65 0/13,006 
51

c.535T>C 1 p.Trp179Arg D2 Prob. APF C65 0/13,006 
52

c.582T>A 2 p.Asp194Glu D2 Pos. TOL C35 0/13,006 Present study 

c.594C>G 2 p.Ser198Arg D2 Prob. APF C65 0/13,006 
26

c.623G>A 2 p.Gly208Asp D2 Pos. APF C65 1/13,006
35

c.631T>C 2 p.Phe211Leu D2 Prob. APF C15 0/13,006 
53

c.646C>T 2  p.Pro216Ser D2 Pos. TOL C65 0/13,006 
54

c.664T>A 2 p.Cys222Ser D2 Prob. APF C65 0/13,006 
55

c.738G>C 2 p.Trp246Cys D2 Prob. APF C65 0/13,006 Present study 

c.758C>A 2 p.Ala253Glu D2 Prob. TOL C65 0/13,006 Present study 

c.761T>A 2 p.Leu254Gln D2 Prob. APF C65 0/13,006 Present study 

c.829-4C>G Int. 2-3 
Splice site defect 

(p.Glu276_Val277insGln) 
4

th
 TMD N.A. N.A. N.A. 0/13,006 Present study 

D1: D1 loop; D2: D2 loop; TMD: transmembrane helical domain; N.A.: Not applicable; Int.: intron; EVS: Exome variant server. PolyPhen2: 

Pos. for possibly damaging, Prob. for probably damaging. SIFT: TOL for tolerated, APF for affect protein function. a-GVGD scores amino acid 

substitutions on a 7-scale scoring system, from C0 (neutral) to C65 (the most likely pathogenic), and C35 is considered intermediate. 
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Table 2: Frequency of clinical features in patients with autosomal dominant retinitis pigmentosa and PRPH2 gene mutation

Description Mean age Number of patients Percentage of positive cases

Pigment deposits 45 + 18 37 73.0%

Autofluorescence changes 47 + 18 35 62.9%

Cystoic macular edema 43 + 17 28 14.3%

Conserved elipsoid zone 43 + 17 27 70.4%
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