Exemples d'applications cliniques chez le jeune enfant des potentiels évoqués stationnaires et de la poursuite visuelle de cibles structurées

Plusieurs techniques ont été proposées en complément de l'examen clinique, pour l'estimation de l'acuité visuelle chez les enfants de moins de 3 ans. Les deux plus connues sont le regard préférentiel (Fantz 1958) et les potentiels évoqués visuels (PEV) soit de type transitoire (Marg 1976, Odom 1982) soit de type stationnaire (steady state) (Harris 1976, Sokol 1978). Le but de ce travail est de montrer l'intérêt de deux nouvelles techniques rapides de mesure du pouvoir séparateur chez les jeunes enfants.

La première est basée sur une méthode psychophysique. Il s'agit de la poursuite visuelle d'une cible structurée (Defoort 1984).

La deuxième est une méthode électrophysiologique : les potentiels évoqués visuels stationnaires avec analyse fréquentielle en temps réel (Bocquet 1987). Nous présentons ici des exemples des deux techniques chez des enfants de moins de 3 ans.

MÉTHODES

* Poursuite

Rappel

La poursuite visuelle fait appel à la fixation centrale. Elle est donc différente du nystagmus optocinétique (NOC). La poursuite réalise rapidement un couplage œil-tête, qui met en jeu les interactions entre labyrinthhe, oculo-motoricité et proprioception de la tête (Jouen 1981). Cette poursuite oculocéphalique est plus élaborée que la poursuite oculaire seule (Barten 1971).

La capacité d'un enfant à poursuivre un test visuel varie avec l'âge. Les études précédentes (Bloch 1983) ont surtout porté sur l'étude de la poursuite de gros objets colorés ou non.

L'utilisation de cette technique comme méthode de mesure du pouvoir séparateur a imposé la mise en œuvre de mires structurées dont tous les paramètres sont contrôlables, en particulier la fréquence spatiale, la luminance moyenne, la vitesse de déplacement de la mire. Un système vidéo spécialisé contrôlé par microprocesseur a été mis en place sur le Moniteur Ophthalmologique (Charlier 1986).

L'enregistrement des mouvements oculaires se faisait par un système caméra-vidéo (Defoort 1984), et actuellement de façon plus simple par l'électro-oculographie cinétique (Charlier 1987).

Protocole

La stimulation est constituée d'une mire de 5 cm de coté que l'on déplace horizontalement à vitesse constante (8 ou 4 degré par secondes). La mire est constituée de barres verticales alternativement noires et blanches de même luminance moyenne que le fond de l'écran (35 candelas/m2) dont les tailles angulaires sont 11°, 22°, 44° et 88 minutes (fig. 1) d'arc pour une distance œil-écran de 1 m. La distance est de 30 cm chez les nouveaux nés (Dewavrin-Devienne 1987), de 50 cm chez l'enfant de moins de 6 mois et de 1 m au-delà (Salapatek 1980).

L'enregistrement des mouvements oculaires est réalisé de façon simple grâce à l'électro-oculographie cinétique au moyen de deux électrodes Beckman placées au niveau des deux canthi externes.

Chaque début d'enregistrement est précédé d'une période d'attente qui consiste à faire clignoter la mire, afin de vérifier la bonne fixation de l'enfant par l'intermédiaire d'une caméra infra-rouge placée sous le stimulateur reliée à un écran de contrôle devant le technicien.

On commence par un test binoculaire, le plus souvent de 22° d'arc. En fonction de l'examen clinique et de ce premier test, on présente soit un test de taille plus petit (11°) soit plus grand (88°); ensuite on teste la vision monocular en plaçant un cache devant un œil puis l'autre.

2 contrôles valident l'enregistrement :
- L'observation du comportement de l'enfant pendant l'examen à l'aide d'une caméra infra rouge.
- Un faux test : un écran gris uniforme est présenté à l'enfant pendant que l'on enregistre ses mouvements oculaires. On doit normalement obtenir des mouvements oculaires désordonnés.

Fig. 1 (en haut) - Mires de poursuite.
Sur la feuille de résultat, l'EOG cinétique se superpose aux déplacements de la mire. La durée d'un enregistrement est de 30 secondes par taille de mire présentée pour la vitesse la plus couramment utilisée. La durée totale d'un examen (binoculaire puis monoculaire) est le plus souvent inférieure à 5 minutes.

La mesure du pouvoir séparateur est donnée par la taille du plus petit test que l'enfant parviendra à poursuivre du regard pendant au moins 2 allers et retours. Le déroulement du test de poursuite nécessite deux personnes, la première se trouvant a l'avant inférieur de la seconde, généralement la mère, tient son enfant dans ses bras face à l'écran. L'examen se pratique dans une pièce sombre et neutre sans autre stimulation visuelle.

Potentiel évoqué visuel

Rappel

Le PEV est la réponse électrique du cortex visuel à une stimulation lumineuse. Ces signaux sont recueillis au moyen d'électrodes posées au niveau du cuir chevelu en regard de chaque lobe occipital. Il existe deux grands types de PEV selon leur mode de stimulation.

- Le PEV transitoire (fig. 2a) nécessitant des stimuli visuels répétitifs (flash, apparition-disparition ou renversement d'un damier) séparés de 1/2 à 1 seconde donnant au système visuel le temps de revenir au repos entre chaque stimulus (Cesalia 1982).

Le PEV transitoire est extrait du bruit de fond (électroencéphalogramme) par la méthode de sommation, ce qui a l'avantage de donner sa forme (suite d'ondes négatives et positives dont la plus caractéristique est l'onde P100) et qui permet le calcul statistique de validité du signal (Huguet 1984). Cette méthode présente cependant des inconvénients car la forme du PEV varie avec l'enfant. Pour obtenir un signal identifiable, un minimum de trente stimulations est nécessaire, et ceci suppose que l'enfant soit attentif plus de 30 secondes, ce qu'en pratique nous obtenons rarement chez des enfants de moins de 4 ans.

- Le PEV stationnaire (fig. 2b), appelé également steady state, où les mêmes stimuli visuels sont répétés à brefs intervalles, empaquetant le système visuel de revenir à un état de repos. Il en résulte une série d'ondes d'activité électrique identique, de même fréquence que les stimuli visuels (Regan 1977).

Le PEV apparaît alors sous la forme d'une onde périodique qui ressemble à une sinusoidale. On perd l'information de forme d'onde qui existe avec le PEV transitoire pour obtenir que l'amplitude (notée AMP sur les schémas), le retard de phase (noté PHA sur les schémas) ainsi que le spectre de fréquence du signal. Cependant les PEV stationnaires ont l'avantage d'être nettement plus rapides.

Deux grandeurs nous intéressent dans l'étude des PEV stationnaires. Le système visuel se synchronise avec les stimuli avec un retard ou déphasage. Il exprime le retard avec la dernière stimulation visuelle. Cette valeur est cyclique prenant des valeurs entre 0 et 360 degrés. La seconde grandeur est l'amplitude des réponses évoquées en microvolts.

La fréquence de stimulation est exprimée en Hertz et représente le nombre de fois par seconde ou par pattern (ici des damiers) apparaît.

La fréquence de réponse est le nombre de fois par seconde ou une forme d'onde donnée apparaît dans la réponse évoquée. Dans le cas d'un damier de type ON-OFF

PEV et mesure du pouvoir séparateur chez l'enfant

La mesure objective de l'acuité visuelle est utilisée chez l'adulte depuis plusieurs années surtout à des fins d'expertise (Hache 1979).

Techniques d'analyse des PEV stationnaires

Les PEV stationnaires enregistrés au niveau du cuir chevelu doivent être extrait de l'activité électrique globale du cerveau de plus grande amplitude. Deux méthodes d'extraction du signal sont possibles (Norcia 1985):

- La première est la méthode classique de sommation qui prend, comme hypothèse, la constance des ondes

![Fig. 2a - PEV transitoire (durée 1 mn).](image1)

![Fig. 2b - PEV stationnaire par accumulation (durée 1 mn).](image2)

![Fig. 2c - PEV stationnaire en temps réel (durée 12 s).](image3)
cérébrales pour des stimulations identiques et la nature aléatoire du bruit de fond (c'est-à-dire de l'électroencéphalogramme). On obtient ainsi un PEV stationnaire dont on mesure l'amplitude crête à crête et le décalage de la courbe par rapport à l'origine (fig. 2b).

- La seconde méthode consiste à reprendre chaque acquisition élémentaire et à filtrer le signal à la fréquence de stimulation (1ère harmonique) pour une stimulation par flash ou par damier de type ON-OFF. Le filtrage dans le domaine des fréquences peut être effectué, soit de façon analogique (Regan 1982), mais a pour inconvénient d'amener une perte d'information, soit de façon numérique (Yoelt 1983) par utilisation de la transformée de Fourier (fig. 2c). Les calculs d'amplitude et de phase sont effectués numériquement. Les avantages du filtrage numérique sont de conserver l'information temporelle et d'augmenter le rapport signal sur bruit (Bocquet 1989).

Protocole de PEV

- **analyse des données**

Un logiciel d'analyse du signal temporel par Transformée de Fourier Discrète (TFD) en temps réel a été développé à l'unité INSERM 279 et implantié sur le Moniteur Ophtalmologique. L'amplitude et la phase de la réponse peuvent être calculées pour une fréquence de stimulation de 5 à 25 Hz et analysées jusqu'à 50 Hz. Ces valeurs sont calculées sur une fenêtre temporelle inférieure à 2 secondes équivalente à un filtrage de largeur de bande inférieure à 1 Hz à -3 dB (par exemple 0,5 Hz à -3 dB pour la fréquence temporelle de 5 Hz).

Chaque enregistrement (fig. 2c) apparaissant à l'écran de contrôle, correspond à l'acquisition temporelle de 8 x 256 points. Les valeurs de l'amplitude et de la phase de chaque échantillon temporel noté ET1 sur la figure 3 correspondant à 256 données temporelles sont calculées en temps réel par TFD et affichées sur l'écran de contrôle (fig. 4). Le recouvrement d'un échantillon temporel (ET2) par

![Stimulations ON-OFF](attachment:image1.png)

Fig.3 - Transformée de Fourier discrète.

![Amplitude (µV)](attachment:image2.png)

Fig.4 - Résultats sur écran de contrôle (phase et amplitude).

- **stimulation**

Nous avons retenu une fréquence de stimulation de 5 Hz (5 événements stimulants par secondes) de type ON-OFF en raison d'une meilleure linéarité des réponses de l'amplitude lors de l'augmentation du contraste et d'une amplitudes plus importante qu'en "reversal" (Zanlonghi 1989).
La durée de présentation des damiers est de 40 ms, suivie d'un écran de même luminance moyenne. Les damiers noirs et blancs ont un contraste de 100%. 5 taillées de damiers (120°, 60°, 30°, 15°, 7° d'angle) pour un champ total de 16 x 12 degrés à une distance de 1,40 mètre sont présentées. Une distance plus courte (1 m) est utilisée pour les enfants de moins de 2 ans. Un test de contrôle consistant à présenter un écran sans stimulation apparente de même luminance moyenne est systématiquement présenté. La durée d'un enregistrement est de 12,8 s par taille de damier, soit pour un œil une durée totale de 1 mn 30 secondes.

visualisation des résultats

Chaque enregistrement est ensuite analysé afin d'en sélectionner une partie où la phase et l'amplitude soient stables pendant une durée d'au minimum 4 s pour la phase. Nous obtenons alors la valeur de l'amplitude et de la phase ainsi que son spectre de fréquence. Ces valeurs sont reportées sur une courbe en amplitude et en phase, en fonction de la taille des damiers.

Système d'enregistrement

Deux électrodes actives sont placées à 2 cm au dessus et de part et d'autre de l'inion. L'électrode non active étant placée au vertex et la masse sur le front. L'activité électrique générée par le cortex au travers de la boîte crâniale est amplifiée par une chaîne d'acquisition, filtrée analogiquement entre 1 et 25 Hz puis numérisée. La stimulation et le système d'enregistrement sont contrôlés par ordinateur afin d'éliminer toute erreur de manipulation.

RESULTATS

Nous présentons deux exemples de poursuite et un exemple de PEV stationnaire chez des enfants de moins de 3 ans.

Figure 5 : Il s'agit d'un enfant de 6 mois ayant un examen ophthalmologique strictement normal y compris les réflexes psychovisuels. Les trois tracés correspondent à la plus grande fréquence spatiale disponible soit 11'. Le tracé du haut correspond à l'étude de la poursuite en binoculaire. Elle est de très bonne qualité et de grande amplitude sans retard, ni poursuite paradoxale. Les tracés du milieu et du bas correspondent à l'étude en monoculaire. La poursuite est de très bonne qualité, symétrique entre les deux yeux.

Figure 6 : Poursuite à l'âge de 12 mois (amblyopie G et nystagmus).

Figure 7 : PEV stationnaire par analyse fréquentielle en temps réel à l'âge de 31 mois (sujet normal). L'acuité visuelle estimée par cette technique est de 1,5/10 en binoculaire, à droite et à gauche.

Figure 6 : Il s'agit d'un enfant né à terme le 29 juin 1987 mais ayant présenté une souffrance néonatale. Un premier bilan pratiqué à l'âge de 3 mois montrait une absence de poursuite visuelle cliniquement visible, des réflexes photomoteurs présents au niveau des deux yeux, des mouvements nystagmiformes. Le fond d'œil montrait des petites papilles. Les PEV flasques étaient altérés au niveau des deux yeux, par contre l'électrorétinogramme était normal.
Un deuxième bilan pratiqué à l’âge d’un an retrouvait la présence d’un nystagmus à droite et à gauche, d’un strabisme convergent de l’œil gauche. Une amblyopie gauche profonde était suspectée. La poursuite de tests structurés confirme cette impression puisque la poursuite est correcte en binoculaire (on remarque le nystagmus) pour les tailles 11’ (fig. 6a) et 22’, à droite pour les tailles 11’ (fig. 6b) et 22’, par contre à gauche il n’y a aucune poursuite pour le gros test de 88’ (fig. 6c). Une amblyopie profonde à gauche est donc confirmée. L’acuité estimée au niveau de son œil droit est d’au moins 1,5/10.

Figure 7 : Il s’agit d’un enfant de 31 mois ayant un examen ophtalmologique normal et une acuité visuelle au test de Weis de 8/10 à droite et à gauche. Les PEV stationnaires pratiqués à une distance de 1,40 m en binoculaire montrent une excellente réponse pour toutes les tailles de damiers présentées. On remarque sur les tracés des périodes d’inattention ou de fermetures des paupières. On doit en tenir compte lorsqu’on mesure l’amplitude des PEV. L’estimation de l’acuité visuelle par cette technique donne au minimum 4/10 en binoculaire. La durée de cette mesure a été de 90 secondes.

CONCLUSION

La poursuite a fait la preuve de son intérêt sur une série de plus de 500 enfants. Une étude clinique importante en cours pour valider les PEV stationnaires avec analyse fréquentielle en temps réel. Les premiers résultats sont très prometteurs.

Bibliographie

Docteur X. ZANLONGHI
Ophthalomogiste
Clinique Sourdille
3 place Anatole France
44000 NANTES