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Abstract

Given the ever-increasing prevalence of type 2 diabetes and obesity, the pressure on global

healthcare is expected to be colossal, especially in terms of blindness. Electroretinogram

(ERG) has long been perceived as a first-use technique for diagnosing eye diseases, and

some studies suggested its use for preventable risk factors of type 2 diabetes and thereby

diabetic retinopathy (DR). Here, we show that in a non-evoked mode, ERG signals contain

spontaneous oscillations that predict disease cases in rodent models of obesity and in peo-

ple with overweight, obesity, and metabolic syndrome but not yet diabetes, using one single

random forest-based model. Classification performance was both internally and externally

validated, and correlation analysis showed that the spontaneous oscillations of the non-

evoked ERG are altered before oscillatory potentials, which are the current gold-standard

for early DR. Principal component and discriminant analysis suggested that the slow fre-

quency (0.4–0.7 Hz) components are the main discriminators for our predictive model. In

addition, we established that the optimal conditions to record these informative signals, are

5-minute duration recordings under daylight conditions, using any ERG sensors, including

ones working with portative, non-mydriatic devices. Our study provides an early warning

system with promising applications for prevention, monitoring and even the development of

new therapies against type 2 diabetes.
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Introduction

From a public health standpoint, timely detection of diabetic eye disease is one of the most

cost-effective health procedures available to avoid the burden of vision loss [1]. Huge efforts

are being made to screen for sight-threatening diabetic retinopathy (DR) [1, 2], but the best

intervention remains to prevent the onset of diabetes [1].

DR affects nearly 100 million people worldwide [3], corresponding to approximately one-

third of all people with diabetes. Type 2 diabetes accounts for 85%–95% of diabetes cases and it

can be avoided often by healthy life choices [4]. Strategies to promote adherence to such

choices would benefit from reliable, large-scale screening methods that identify and allow fol-

low-up of people at risk of type 2 diabetes, i.e., those with overweight, obesity or metabolic syn-

drome, but still without diabetes. Ultimately, predicting risk factors of developing type 2

diabetes should mitigate the risk of developing complications like DR.

The screening method to be developed must overcome the limitations of the current gold

standard tests, particularly the A1C [5] and the 2-hour post-challenge glucose tests [6], which

are both invasive and require fasting. A1C, in addition, does not always reflect or predict the

burden of diabetes and fails to account for hypoglycaemia and glucose variability [7, 8]. The

new screening method should also be based on a reliable biomarker of the silent installation of

type 2 diabetes.

An appealing candidate is spontaneous retinal oscillations. Spontaneous neural oscillations

have proven being biomarkers for neurodegenerative diseases [9] and diabetes is one of them

[10]. Spontaneous brain activity changes with diabetes [11], but also with obesity [12–16].

Notably, retinal neurons can produce spontaneous activities [17–29] and neurodegenerative

retinas showed altered patterns of spontaneous activity [30–32], including in diabetes condi-

tions [33].

Here we propose a diagnostic prediction method for early risk factors of type 2 diabetes and

thereby DR, based on the non-invasive recording of spontaneous retinal oscillations using a

simple, yet meaningful non-evoked electroretinogram (ERG) protocol. ERG is the only clinical

objective test recommended by the International Society for Clinical Electrophysiology of

Vision to stage early DR [34], before vascular changes are apparent, and its clinical application

has significantly improved with the commercial introduction of non-invasive, portative, and

non-mydriatic ERG devices [35]. Nonetheless, ERG has always been based on the response of

retinal cells to a flash of light and never under spontaneous conditions. We found that sponta-

neous ERG signals are differentially altered in rodent models of obesity and prediabetes, allow-

ing their discrimination by a random forest-based prediction model. The model also predicts

the evolution of the diabetes model and risk factors for DR in humans, including overweight,

obesity, and metabolic syndrome. Our algorithm can be coupled with spontaneous ERG sig-

nals from different sensors. Principal component and discriminant analysis revealed slow ERG

frequencies as main discriminators for our predictive model. Together, our study shows that

spontaneous ERG signals are intimately linked to systemic metabolic status and demonstrates

their use to screen people for preventable stages of DR.

Materials and methods

Ethics statement

All animal experiments were approved by the Bioethics Committee of the Institute of Neurobi-

ology (protocol #74) at UNAM (clave NOM-062-ZOO-1999), which has jurisdiction to

approve animal studies, in accordance with the rules and regulations of the Society for Neuro-

science: Policies on the Use of Animals and Humans in Neuroscience Research. Approval was
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obtained from the IMO and INDEREB Human Participants Ethics committee (reference: CEI/

029-1/2015), the National Ethics Committee (reference: CONBIOÉTICA-09-CEI-006-

20170306), the Research Committee at APEC (17 CI 09 003 142), and the Research Ethics

Committee at ENES León (reference: CEI_22_06_S21). Written informed consent was pro-

vided by all subjects. All procedures were conducted in accordance with the tenets of the Dec-

laration of Helsinki.

Animals and models

C57BL/6 mice (male:female ratio = 1) between 6 and 8 weeks of age were obtained from the

Institute of Neurobiology’s animal house. Much efforts were made to reduce the number of

animals at minimum to achieve statistical significance and their suffering (sham manipulation

daily a week before testing, use of analgesic drops and semi-invasive ERG electrodes placed at

the equator of eyeball, which could not compress eyeball). Male Wistar (n = 20–22) adult

(250–300 g) rats (n = 6–8) were used, as well as lean (n = 15) and spontaneous obese (n = 12)

Neotomodon alstoni mice [36]. Animals were fed ad libitum and reared in normal cyclic light

conditions (12 h light/dark cycle) with an ambient light level of *400 lux. Plasma glucose con-

centrations were measured from a tail blood sample using a blood glucose analyzer (Accu-

check active, GC model).

Six- to eight-week-old C57BL/6 mice were divided into two groups of 16 and fed a chow

diet (5020, Lab Diets) containing 21% of calories from fat or a high-fat diet containing 60% cal-

ories from fat (D12492 Research Diets).

Diabetes was induced in Wistar rats by i.p. injection of streptozotocin (55 mg per kg body

weight) in citrate buffer [37]. Control rat group received only citrate buffer injections. We con-

firmed diabetes by measuring blood glucose (>250 mg/dl in animals [38]) 24 h after streptozo-

tocin injection. Bodyweight was measured as indicated and glycemic controls were always

performed after a 6 h fasting [39].

For in vivo ERG, animals were evaluated after a 12-h dark adaptation period.

Once experiments were concluded, animals were sacrificed by CO2 inhalation.

Insulin and glucose tolerance tests

Glucose tolerance tests and insulin tolerance tests were performed on C57BL/6J after 12 weeks

of control or high-fat diet and in 1-year-old lean and spontaneously obese Neotomodon alstoni
mice, after 6-h fasting [39].

The insulin tolerance test consisted in measuring glucose levels with a glucometer in tail

vein blood samples obtained with a lancet needle before or 15, 30, 45, 60, and 90 minutes after

an ip injection of 1 U/kg insulin (Humulin R; Eli Lilly). For the glucose tolerance test, mice

were given glucose at a dose of 2 g/kg through a jugular vein catheter. Blood samples were

then collected at 0, 15, 30, 45, 60, and 90 min after glucose administration to measure glycemia.

Glucose profiles normalized to the initial glucose reading of each mouse were plotted for each

group versus time of subsequent glucose determinations.

Electroretinograms in animals

Animals were anesthetized with 70% ketamine and 30% xylazine (1 μl/g body weight, ip). Cor-

neas were hydrated with hypromellose (5 mg/mL), tetracaine drops were applied to animal

eyes to avoid animal pain, and pupils were dilated with tropicamide-phenylephrine (50 mg/8

mg/mL). ERG responses were recorded with contact lens silver electrodes [40] (3.0 mm diame-

ter, Ocuscience) placed at the equator of eyeball, which could not compress eyeball. Reference

electrodes were positioned subcutaneously exactly between the eyes.
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The signal was amplified x100; the bandpass was set at 0.1 Hz to 1 kHz (AC-DC Differential

Amplifier, Model 3000, A-M Systems) and acquisition frequency to 1 kHz (USB-6009,

National Instruments). Spontaneous mesopic activity was measured for 10 minutes after a

20-minute dark adaptation period (0.1 lux) and then spontaneous photopic activity for 10

minutes after adaption to normal light (400 lux) for 10 min. At the end, light stimulation (0.7

ms flashes of 0.38 log cd.s/m2; MGS-2 white Mini-Ganzfeld Stimulator, LKC Technologies)

was given to confirm retina function. If no classical evoked response was seen [41], data were

discarded.

Human data description

A total of 520 adult subjects aged between 30 and 80 years (mean: 45.27 ± 0.82 years, 265

females), metabolically healthy or with overweight, obesity, MetS, or diabetes but no DR, were

enrolled between February 26, 2015 and December 2019 and from September 2021 and June

17, 2022, in the Mexican Institute of Ophthalmology (IMO) of Querétaro (mean age:

51.39 ± 1.49 years, 27 females), between November 11 and December 20, 2019 and from Janu-

ary 6 and May 26, 2022, in the Instituto de la Retina del Bajı́o (INDEREB) in Querétaro (mean

age: 32.98 ± 2.07 years, 24 females), between August 10, 2021 and March 20, 2022 in the Aso-

ciación Para Evitar la Ceguera (APEC) in Mexico city (mean age: 45.77 ± 1.20 years, 119

females), and between August 10, 2021 and May 31, 2022 in the Clı́nica de Salud Visual (CSV)

at ENES León UNAM in León (mean age: 44.96 ± 0.84 years, 96 females). 375 (age mean:

46.01 ± 0.98 years, 180 females) completed all tests required for the current study.

Subjects underwent an anamnesis and an initial optometric examination to ensure that

they were eligible to participate. The exclusion criteria were ages outside 30 to 80 range, lens

opacity, myopia greater than 6 diopters, glaucoma or other concomitant ophthalmologic dis-

orders, ocular anomalies (e.g., surgery, trauma), recent use of laser or anti-angiogenic intravi-

treal administration, and cornea problems that disable ERG recordings.

Qualified medical personnel collected the anthropometric data in the morning (8 am to 9

am) after an overnight fast. Height was measured to the nearest 0.5 cm with a stadiometer

(Seca 213; Seca). Bodyweight was measured with subjects wearing light clothing and without

shoes to the nearest 0.1 kg on a mechanical column scale (Seca 700; Seca). Waist circumference

was measured on undressed subjects at the midpoint between the lower margin of the last pal-

pable rib and the top of the iliac crest while the subject was standing, after a moderate expira-

tion, with a non-stretchable tape. Blood pressure was measured by using a mercury cuff

sphygmomanometer after the study participant had been quietly seated for�10 min. Blood

samples were taken from an intravenous catheter without stasis after an overnight fast of at

least 8 h. Laboratory measurements that include fasting blood glucose, glycated hemoglobin

(HbA1c), insulin, triglycerides (TG), low-density lipoprotein (LDL) cholesterol, very low-den-

sity lipoprotein (VLDL) cholesterol, high-density lipoprotein (HDL) cholesterol, total choles-

terol (CT), and creatinine were performed at INTERMEDIC (Querétaro, Mexico) for IMO

data, iml Laboratorio Médico (Querétaro, Mexico) for INDEREB data, Laboratorio clı́nico

Jenner (Mexico City, Mexico) for APEC data, and Laboratorios Salud Digna (León, Mexico)

for CSV data. The homeostasis model of assessment index (HOMA-I) was calculated using

fasting insulin and glucose values [42].

All patients were classified according to the following criteria: normoglycemia (fasting glu-

cose< 6.1 mmol/l) and diabetes (fasting glucose� 7.0 mmol/l), according to the 1999/2006

WHO criteria [43, 44]. Normal weight was defined body mass index (BMI) between 18.5 and

24.99 kg/m2, overweight with a BMI between 25 and 29.99 kg/m2, and obesity with a BMI over

30 kg/m2. MetS was defined according to the International Diabetes Foundation criteria for
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MetS [45], i.e. central obesity—BMI>30 kg/m2 or waist circumference > = 94 cm in male

and> = 80 cm in female—plus any two of the following four factors: raised TG, reduced HDL,

raised blood pressure, raised fasting plasma glucose, raised HbA1c, raised plasma insulin, TG,

LDL, VLDL, total cholesterol, creatinine, HOMA-I, or atherogenic index (calculated as log10

(TG/HDL) [46]). Data from IMO, INDEREB, and APEC (n = 307) were used for model train-

ing and test, and data from CSV (n = 39) were used for external validation of the predictive

diagnosis model. Tables 1 and 2 contain an overview of patient demographics and biometrics

for training/test and external validation of the predictive diagnosis model, respectively.

All subjects underwent a complete ophthalmologic examination including visual acuity

testing using Snellen primer; anterior segment and crystalline status under microscopy and

indirect ophthalmoscopy with a magnifying glass of 20 diopters; intraocular pressure by flat-

tening tonometry (iCare TA01i); photographic study (7-field color photographs under pupil

dilation, ZEISS camera, FM/NA, 60-degree images at IMO; ZEISS clarus1 500 Fundus Cam-

era at INDEREB and CSV; and Visucam1 500 at APEC; and macular patterns, raster and

macular thickness map by optical coherence tomography (OPTOVUE RTV-1000 equipment

at IMO; Spectralis1Heidelberg Engineering at INDEREB and APEC; and CIRRUS HD-OCT

5000, Zeiss at CSV). Ophthalmic ERG tests were also performed, following ISCEV guidelines

[47]. At IMO, the dark-adapted 0.01, 3.0, and 10, dark-adapted 3.0 oscillatory potentials, light-

adapted 3.0, light-adapted 3.0 flicker, and multifocal ERG responses were measured in the

order indicated using the MonElec2 (Metrovision, France; from February 26, 2015 to Decem-

ber 20, 2017) or Retimax Advanced (CSO, Italy; from January 10, 2018 to June 17, 2022). At

INDEREB, APEC, and CSV, the dark-adapted 0.01, 3.0, and 10, light-adapted 3.0, light-

adapted 3.0 flicker ERG responses and the DR score [48] were recorded using a mydriasis-free

Table 1. Characteristics of the patients studied for model training and test using ERG spectral components from three different recording devices.

CONTROL OVERWEIGHT OBESITY MetS DIABETES without DR p
n 80 40 14 66 68

Age (years) 41.49 ± 1.88d 42.70 ± 2.08cd 39.57 ± 2.93cd 60.45 ± 1.79bc 65.86 ± 1.49a <0.0001

DM1 - - - - 7

DM2 - - - - 61

Duration of diabetes (years) - - - - 9.45 ± 1.04c 0.0077

Body weight (Kg) 58.38 ± 1.23c 72.47 ± 1.40ab 79.12 ± 3.97a 69.65 ± 4.41a 76.48 ± 1.86a <0.0001

Waist circumference (cm) 83.13 ± 1.30c 96.05 ± 1.38ab 104.14 ± 4.26a 88 ± 3.77a 102.91 ± 1.53a <0.0001

Hip circumference (cm) 82.28 ± 1.25c 93.80 ± 1.38b 99.46 ± 3.94ab 96.36 ± 3.96ab 103.17 ± 1.18a <0.0001

BMI (Kg/m2) 22.39 ± 0.31d 26.85 ± 0.25bc 29.93 ± 1.82abc 27.12 ± 1.08ab 30.14 ± 0.63a <0.0001

Glycemia (mg/dl) 86.77 ± 0.79b 87.75 ± 1.21b 91.43 ± 3.09b 144.82 ± 20.06b 147.48 ± 6.39a <0.0001

HbA1c (%) 5.30 ± 0.03d 5.47 ± 0.05d 5.39 ± 0.10d 8.41 ± 0.69d 7.67 ± 0.24c <0.0001

Insulinemia (μUI/ml) 7.36 ± 0.44c 9.54 ± 0.91c 11.15 ± 1.74abc 9.84 ± 1.70bc 21.50 ± 2.89ab <0.0001

HOMA-I 1.67 ± 0.10b 2.06 ± 0.21b 2.64 ± 0.49ab 3.44 ± 0.70b 8.66 ± 1.31a <0.0001

TG 100.37 ± 4.79a 104. 70 ± 6.99c 104.94 ± 12.56bc 132.55 ± 21.37a 180.61 ± 11.05ab <0.0001

CT (mg/dl) 179.55 ± 3.61b 185.12 ± 4.37ab 192.19 ± 8.05ab 190.17 ± 12.66a 183.36 ± 4.39b 0.0015

HDL (mg/dl) 56.92 ± 2.02a 54.64 ± 1.75ab 56.90 ± 3.36abc 48.84 ± 5.21c 46.13 ± 1.45c <0.0001

LDL (mg/dl) 105 ± 2.72b 117.27 ± 3.73ab 118.25 ± 7.97ab 113.06 ± 11.02a 108.55 ± 3.84ab 0.00889

VLDL (mg/dl) 17.23 ± 1.08d 17.62 ± 1.98d 17.05 ± 1.94cd 26.51 ± 4.27ab 30.34 ± 2.37bc <0.0001

Creatinine (mg/dl) 0.79 ± 0.02b 0.77 ± 0.02ab 0.75 ± 0.04ab 1.09 ± 0.18ab 0.79 ± 0.05b 0.00965

Systolic blood pressure (mmHg) 114.73 ± 2.23c 114.79 ± 2.82c 124.14 ± 7.75 bc 125.64 ± 4.72ab 131.33 ± 2.62b <0.0001

Diastolic blood pressure (mmHg) 71.64 ± 1.16d 74.05 ± 1.65cd 73.14 ± 3.21bcd 85.82 ± 4.31a 82.61 ± 1.50ab <0.0001

Values, mean ± s.d. P values were determined by the Welch ANOVA test. Values that do not share a letter (a, b, or c) are statistically different. Years, y.

https://doi.org/10.1371/journal.pone.0278388.t001
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ERG device (RETeval complete, LKC Technologies, USA). OP features (N1, P1, and N2 ampli-

tudes and peak times, N1-P1 and P1-N2 ratios) were extracted from ISCEV dark-adapted 3.0

ERG protocol [47]. The DR score derived from flicker ERG and pupillography data correlate

with ocular intervention for DR [48]. In addition, spontaneous ERG responses were measured

in all patients using a custom protocol developed specifically for each ERG device (no flash-

light, 0.3–1000 Hz band-pass filter with a 50 Hz notch, 1 kHz acquisition, and ×100,000 gain).

At IMO, 30 min prior to ERG recording, one drop of tropicamide 1% was instilled into each

eye as a cycloplegic and contact lens electrodes were used posterior to corneal anesthesia with

proparacaine hydrochloride eye drops. At INDEREB, APEC and CSV, skin electrodes on the

lower eyelid were used [49]. All patients were adapted to mesopic conditions for 20 minutes

prior dark-adapted ERG assessment and before ERG assessment under photopic conditions,

patients were adapted to normal light (400 lux) for 10 min. The acquisition sequence was as

follows: spontaneous dark-adapted ERG, evoked dark-adapted ERGs, spontaneous light-

adapted ERG, and evoked light-adapted ERGs. Electrode impedance was monitored through-

out the test and maintained below 10 KOhm by repositioning the electrodes as required. Using

an inbuilt artefact rejection algorithm, the electrophysiology software automatically detected

artefacts (e.g., from blinking), removed the corresponding responses and retested the

sequence. Imaging, ERG, and optometric measurements were performed by certified techni-

cians or ophthalmologists.

Patient diagnosis for DR or other eye issues was established once by experts at IMO (M.G.

R.), INDEREB (R.G.F.), APEC (H.Q.), and CSV (L.F.H.Z.) and after the finalization of our

predictive diagnosis model, a second diagnosis (E.L.S. and V.C.S. from IMO) was established

to compare our model performance with that of experts. The second diagnosis by experts was

Table 2. Characteristics of the patients studied for external model validation.

CONTROL OVERWEIGHT OBESITY MetS DIABETES without DR p
n 19 6 4 5 4

Age (years) 30.50 ± 3.12c 38.80 ± 7.62c 33 ± 2.12bc 31.5 ± 2.47c 67.33 ± 7.31a <0.0001

DM1 - - - - -

DM2 - - - - 3

Duration of diabetes (years) - s- - - 2.55 ± 1.73a <0.0001

Body weight (Kg) 53.57 ± 2.32b 70.98 ± 2.95a 67.55 ± 1.52ab 74.60 ± 3.25a 82.20 ± 1.98a <0.0001

Waist circumference (cm) 86.13 ± 2.82b 102.52 ± 2.23a 89 ± 0.53ab 101.75 ± 0.53ab 95.80 ± 1.56ab <0.0001

Hip circumference (cm) 73.56 ± 3.75c 88.94 ± 5.01bc 97 ± 1.41abc 93 ± 1.77abc 105.90 ± 0.64ab <0.0001

BMI (Kg/m2) 20.38 ± 0.67c 26.40 ± 0.45ab 26.66 ± 0.73bc 28.08 ± 0.48ab 27.97 ± 1.02ab <0.0001

Glycemia (mg/dl) 84.89 ± 2b 83.60 ± 1.71b 87 ± 5.66b 89 ± 2.83b 118 ± 4.50b <0.0001

HbA1c (%) 5.32 ±0.03a 5.62 ± 0.12a 5.20 ± 0.10a 5.35 ± 0.32a 7.03 ± 0.38b <0.0001

Insulinemia (μUI/ml) 7.49 ± 1.25b 10.14 ± 1.84b 15.25 ± 6.26b 14.15 ± 1.38b 18.30 ± 3.60a 0.00245

HOMA-I 1.61 ± 0.29b 1.84 ± 0.26b 3.45 ± 1.59b 2.85 ± 0.18b 5.40 ± 0.98a 0.0483

TG 76.75 ± 8.74b 93.84 ± 13.38b 110.55 ± 1.47b 290 ± 46.64a 142.85 ± 17.07b <0.0001

CT (mg/dl) 177.21 ± 4.26 173.13 ± 0.25 183.27 ± 0.07 205.56 ± 1.02 184.13 ± 0.32 0.5103

HDL (mg/dl) 55.69 ± 7.30b 55.74 ± 3.20b 45.49 ± 3.53a 39.16 ± 6.45a 44.36 ± 3.28a 0.0345

LDL (mg/dl) 98.35 ± 7.66b 112.26 ± 0.18ab 111.94 ± 0.09ab 123.27 ± 0.61ab 102.60 ± 0.32ab 0.04646

VLDL (mg/dl) 9.36 ± 1.57bc 12.94 ± 2.52bc 14.75 ± 0.51bc 45.10 ± 7.77a 33.33 ± 2.85b <0.0001

Creatinine (mg/dl) 0.78 ± 0.04b 0.77 ± 0.04b 0.78 ± 0.02b 0.80 ± 0.04ab 0.91 ± 0.08ab 0.00418

Systolic blood pressure (mmHg) 106.89 ± 3.71 109 ± 6.41 110.50 ± 8.13 138.50 ± 3.18 131 ± 1.41 0.0643

Diastolic blood pressure (mmHg) 73.33 ± 3.43 76.80 ± 4.47 66 ± 6.36 78 ± 3.54 86 ± 9.19 0.059

Values, mean ± s.d. P values were determined by the Welch ANOVA test. Values that do not share a letter (a, b, or c) are statistically different. Years, y.

https://doi.org/10.1371/journal.pone.0278388.t002
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made under three conditions, the first with access to full eye examinations, the second with

access to full eye tests and reference blood tests for diabetes, and the last with access to full eye

tests, full blood tests, and anamnesis.

To test if ERG data from one sensor could improve of our model performance, a group of

patients tested with the mydriasis-free RETeval ERG device was enrolled at APEC, INDEREB,

and CSV from January to June 2022. Table 3 contains an overview of these patient demograph-

ics and biometrics.

ERG data processing

For spectral analysis of both human and animal ERGs, signals were initially low-pass filtered at

1 kHz and high-pass filtered at 0.1 and 0.3 Hz for animals and humans, respectively. Record-

ings with large artifacts (which exceeded ± 100 μV) were removed. Recordings from the two

eyes were independently analyzed. Raw ERG signals were normalized between -1 and +1.

ERGs show discontinuous activity, reason for which the wavelet (Morlet) transform was

used to analyze them. Analysis was carried out with the MATLAB-based fieldtrip

toolbox implementing the wavelet method [50]. The data were analyzed using custom-made

MATLAB scripts (MATLAB R2018; MathWorks). Spontaneous human ERG signals were

transformed within consecutive epochs of 10, 30, and 60 s. The corresponding number of win-

dows was 30, 10, and 5, respectively. Time and spectral resolutions were 0.01 s and 0.05 Hz,

respectively. The wavelet transform data were represented as scalograms or normalized power

spectra obtained by averaging the wavelet transform throughout the recording. The latter were

subsequently grand averaged across all samples, animals, and patients for each condition. The

standard error of the mean of the power spectra was calculated across animals/subjects.

Table 3. Characteristics of the patients studied for external model validation using ERG spectral components from one recording device.

CONTROL OVERWEIGHT OBESITY MetS DIABETES without DR p
n 37 18 8 42 33

Age (years) 34.92 ± 2.85c 38.83 ± 3.59bc 38.25 ± 3.12bc 46.12 ± 2.02b 60.58 ± 2.05a <0.0001

DM1 - - - - 1

DM2 - - - - 32

Duration of diabetes (years) - - - - 6.15 ± 1.12b 0.0003

Body weight (Kg) 55.03 ± 1.45c 71.41 ± 1.80ab 75.34 ± 6.62ab 78.20 ± 2.03a 72.19 ± 1.99ab <0.0001

Waist circumference (cm) 83.24 ± 3.05b 96.95 ± 1.80a 97.81 ± 4.65a 102.63 ± 1.30a 102.25 ± 1.74a <0.0001

Hip circumference (cm) 73.82 ± 2.94b 86.69 ± 5.64ab 96.28 ± 5.85a 98.92 ± 1.78a 101.69 ± 1.41a <0.0001

BMI (Kg/m2) 21.15 ± 0.35c 26.78 ± 0.34ab 26.48 ± 1.91ab 29.03 ± 0.65a 29.71 ± 0.73a <0.0001

Glycemia (mg/dl) 82.84 ± 1.08c 85.18 ± 1.14c 90.50 ± 1.85c 89.93 ± 1.87c 132.42 ± 8.56b <0.0001

HbA1c (%) 5.32 ± 0.04d 5.48 ± 0.06d 5.31 ± 0.08d 5.62 ± 0.06d 7.42 ± 0.30c <0.0001

Insulinemia (μUI/ml) 7.82 ± 0.64b 9.99 ± 1.35b 10.89 ± 1.92b 13.65 ± 1.29ab 18.22 ± 4.15ab 0.001

HOMA-I 1.61 ± 0.12b 2.02 ± 0.27b 2.46 ± 0.47b 3.11 ± 0.33b 5.69 ± 1.12ab <0.0001

TG 107.41 ± 8.26b 96.89 ± 8.67b 132.63 ± 18.93b 210.66 ± 18.48b 188.76 ± 13.18b <0.0001

CT (mg/dl) 176.20 ± 4.53b 171.70 ± 7.88b 186.57 ± 11.43ab 201.50 ± 5.56ab 182.93 ± 6.09b 0.012

HDL (mg/dl) 54.29 ± 2.78a 53.09 ± 2.95a 54.96 ± 5.99a 44.62 ± 1.41a 46.83 ± 1.58a 0.028

LDL (mg/dl) 106.62 ± 3.70a 113.24 ± 6.35a 112.39 ± 11.96a 124.43 ± 4.70a 106.35 ± 5.33a 0.128

VLDL (mg/dl) 14.84 ± 1.42c 13.11 ± 1.50c 19.15 ± 3.22bc 32.02 ± 2.85ab 30.19 ± 2.77b <0.0001

Creatinine (mg/dl) 0.81 ± 0.03b 0.82 ± 0.03b 0.81 ± 0.04b 0.90 ± 0.08b 0.84 ± 0.07b 0.001

Systolic blood pressure (mmHg) 113.73 ± 3.11b 119.17 ± 3.43ab 109.13 ± 3.59b 133.93 ± 2.75a 135.00 ± 3.87a <0.0001

Diastolic blood pressure (mmHg) 71.79 ± 1.81b 76.89 ± 1.58ab 70.75 ± 3.25b 85.19 ± 1.25a 80.97 ± 2.23a <0.0001

Values, mean ± s.d. P values were determined by the Welch ANOVA test. Values that do not share a letter (a, b, or c) are statistically different. Years, y.

https://doi.org/10.1371/journal.pone.0278388.t003
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In exploratory analysis, frequency points were initially considered between 0.1 or 0.3 Hz

and 1 kHz (not shown) in animals and humans, respectively, and then refined in ranges where

activity was detected (0.1–10 Hz and 0.3–40 Hz for animals and humans, respectively).

Oscillatory potentials (OPs) were digitally isolated from the scotopic B-wave using a 100–

500 Hz digital filter.

Modeling structure and development

Four common classification algorithms with built-in feature selection (Random Forest, deep

learning and linear and radial support vector machines) were applied on human datasets using

the open-source R package caret (version 6.0–73) for support vector machines and the H2O

package for Random Forest and deep learning. Random Forest was applied on animal datasets

using the H2O package. In all cases, the final datasets were randomly divided into training

(80% of observations) and testing (20%) sets. Only validation dataset results were reported.

Random Forest parameters were tuned as follows: ntrees = c(50, 70, 90, 100, 150, 200, 250, 300,

350, 400, 450, 500), max_depth = c(9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20),min_rows = c

(1,2,3,4). We used the option in caret (precision, accuracy, sensitivity, and specificity) and

H2O (ROC, ROC AUC, and confusion matrix) to return class probabilities for all classifiers.

Model performance analysis

Classes were balanced for all predictions. We therefore computed test performance metrics,

including ROC curves [51, 52], AUC-ROC, accuracy, sensitivity, specificity, precision, nega-

tive predictive value (NPV) [53], and confusion matrix [54]. The performance of our model

was contrasted to the second patient diagnosis by experts using precision, recall, and F1-score.

Statistical analysis

Statistical analyses were performed using Matlab (Statistics and Machine Learning Toolbox).

Data are reported as mean ± s.e.m. or ± 95% confidence interval. All data showed normal dis-

tribution and equal variance according to the D’Agostino–Pearson omnibus and Levene tests,

respectively. Statistical significance was therefore determined either using unpaired t-test or,

for multiple comparisons, using a mixed ANOVA and Bonferroni post-hoc. Human metrics

were analyzed using the Welch ANOVA that accounts for variance heterogeneity.

For explanatory statistical analyses, the following variables were considered: BMI, hip and

waist circumferences, TG, HDL, blood pressure, fasting plasma glycemia, HbA1c, plasma insu-

lin, LDL, VLDL, CT, creatinine, HOMA-I, atherogenic index, normalized power of 0.3 to 40

Hz oscillations with a frequency resolution of 0.05 Hz, and peak frequencies in the 0.3–2, 10–

20, and 20–40 Hz bands. The variables with higher variance (CoV function in R) were selected,

i.e., TG, CT, fasting glycemia, LDL, systolic blood pressure, age, body weight, hip circumfer-

ence, HDL, VLDL, normalized power of 0.45, 0.4, 0.5, 0.55, 0.6 Hz activities, AUC of the 0.3–

40 Hz band, normalized power of 0.65, 0.35, 0.7, 0.3, 0.75, 0.8 Hz activities, and AUC of the

20–40 Hz band, (ordered in descending order of variance) to perform PCA analysis. PCA

panel and biplots of PC1, PC2, and PC3 were generated in R (princomp, biplot). Linear dis-

criminant analyses were performed in R (library mass; code available in the provided Github

access). Cases with missing values were omitted.

To calculate the correlation between the spontaneous oscillation (SO) frequency compo-

nents of major variance (detailed above), we computed a PCA score for each patient by com-

bining linearly each variable coefficient (PC1) multiplied by its real value. Correlation analysis

was done by calculating the Pearson’s R coefficient (cor function in R).

The F1 score was calculated to rank our models for the shortest ERG window.
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Code availability

We made use of several open-source libraries to conduct our experiments: caret (https://

topepo.github.io/caret/) and H2O (http://docs.h2o.ai/), which provide implementations of

individual model components. To facilitate improved reproducibility of our data analyses, the

R code and documentation for the analysis are available online (https://github.com/

airetinopathydx/AIRetinopathyDx_).

Results

Predictive model for obesity, type 1 diabetes, and type 1 diabetes evolution

based on spontaneous ERG oscillations in rodents

Spontaneous ERGs of high-fat diet-fed mice that are obese and insulin-resistant after 12 weeks

(S1A Fig) showed three consistent peaks in the 0.1–10 Hz range (Fig 1A) of similar power

compared to lean mouse ERGs (Fig 1B). The mid-low (1–1.8 Hz) peak frequency was reduced

in obese mice, while the low (0.1–0.8 Hz) and mid (2–4 Hz) peak frequencies were not affected

(Fig 1B). Spontaneously obese insulin-resistant (S1B Fig) mice and streptozotocin-treated

hyperglycemic (S1C Fig) rats exhibited low to mid-low frequency oscillatory activities (Fig 1C

and 1E, respectively) of similar power compared to their respective controls (Fig 1D and 1F).

The low (0.6–1 Hz) peak frequency (Fig 1D) and the very low (0.2–0.6 Hz) and low-to-mid

(0.6–2.5 Hz) peak frequencies (Fig 1F) were reduced in ERGs of spontaneously obese mice

and streptozotocin-treated rat, respectively. In contrast, oscillatory potentials (OPs), consid-

ered as the most precociously altered ERG parameter in diabetes [55], remain unchanged in

high-fat diet-fed mice (S1D and S1E Fig).

We next tested the potential predictive content of these signals measured under the sponta-

neous modality. A single predictive model based on random forest algorithm was developed

using the power spectra of spontaneous ERG oscillations in the activity range between 0.1–10

Hz (see Methods for more details). The area under the receiver operating characteristic (ROC)

curve (AUC-ROC) values are 0.804, 0.875, and 0.906 for the high-fat diet-induced obesity

mouse model (Fig 1G), the spontaneously obese mouse model (Fig 1H), and streptozotocin-

induced type 1 diabetes rat model (Fig 1I), respectively. Additional metrics including accuracy

and precision indicate that our model predicts correctly in 80 to 87.5% of cases and is sure of

its prediction in 80 to 84.6% of cases (Fig 1G–1I). The specificity of this model is good (>0.75),

meaning that it misses few non-diseased cases, and it is extremely sensitive in predicting both

obesity and type 1 diabetes cases (Fig 1H and 1J).

Predicting a disease condition is useful for diagnosis at a given disease stage, but diabetes

and its complications evolve [33, 56]. Progressive diabetic retinal neurodegeneration has been

reported between 2 and 32 weeks of age in rodent models of diabetes [57]. We therefore asked

if our model could discriminate the disease cases from control ones over time by using the

power spectra of rat ERGs after 4, 6, 8 or 12 weeks of streptozotocin treatment. The perfor-

mance of this multiclass classification is visualized in a confusion matrix (Fig 1J). Our model

correctly identified the week classes in 75% of cases (Fig 1J). These data show that the major

earliest risks of DR, i.e., obesity and type 1 diabetes, can be predicted by spontaneous ERG

oscillations in rodents.

Exceeding expert performance to predict preventable risks of type 2

diabetes and thereby DR

To assess the clinical relevance of our approach, we created a human database of spontaneous

ERGs (Fig 2A) from 80 metabolically healthy adult subjects (54 eyes), 40 patients with
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overweight (24 eyes), 14 patients with obesity (8 eyes), 66 patients with metabolic syndrome

but no diabetes (MetS, 56 eyes), and 68 patients with diabetes but no DR (44 eyes) (Table 1),

who were referred to both IMO and INDEREB ophthalmology clinics for general eye check-

up. Participants with MetS were older than controls (median 60.45 years vs 41.49 years,

p<0.001) and patients with diabetes were older than all other groups (median 65.86 years vs

46.05 years, p<0.001), and more likely to be women (79.41% vs 20.58%, P< 0.0001) (Table 1).

A ground-truth label for the presence of metabolic health, overweight, obesity, MetS, diabetes

mellitus, and no DR was established using internationally accepted criteria, as referenced in

the Methods. Importantly, OP parameters of the overweight, obese, and MetS groups remain

unchanged compared with the control group and overall, they also showed no difference in

the diabetes without DR group (S2A–S2C Fig). The DR score [48] is similar between the con-

trol, overweight, obese, and MetS group, and is reduced patients with diabetes but no DR (S2D

Fig). We further showed that the spontaneous ERG oscillation component was neither corre-

lated with OP parameters (S2E and S2F Fig) nor DR score (S2G Fig).

Spontaneous activity is seen between 0.3 and 40 Hz (Fig 2B), with main peaks in the 0.3–2,

10–20, and 20–40 Hz bands (Fig 2B, insets). The large variation in our dataset that we assumed

was confirmed by the absence of statistical differences in AUC and peak frequency between all

groups in the previously mentioned bands (Fig 2B). We therefore pooled spontaneous ERG-

power spectra from non-healthy participants as one disease group (Fig 2C) and found an

increased peak frequency in the 20–40 Hz band in the disease group (Fig 2D). No significant

difference was observed in the AUC or peak frequency in the 0.3–2 and 10–20 Hz bands (Fig

2D). Next, the power spectra from 986 aleatory fragments of one-minute duration extracted

from the 186 ERGs registered from a total of 268 patients (186 eyes), were randomized across

training (80%) and test (20%) sets; diseases cases were defined as all cases except metabolically

healthy and no DR, and the same random forest-based model used in animal models was

applied in our database of human ERG power spectra.

The predictive model performed good (AUC-ROC = 0.761, Fig 2E) and is accurate in

67.3% of the cases (Fig 2F). The prediction precision is poor and the model shows 85.4% sensi-

tivity and a specificity of 61.5% (Fig 2F). We then aimed to assess the accuracy of our model

using an external cohort. To this end, we created a validation database based on data from

patients enrolled in an important eye care setting in Mexico City (Table 2). Using this valida-

tion dataset of 0.3–40 Hz power spectra (126 aleatory fragments of one-minute duration

extracted from the 38 ERGs registered from a total of 39 patients (11 eyes from controls, 5 eyes

from overweight, 3 eyes from obese, 3 eyes from MetS, and 3 eyes from diabetes but no DR),

the predictive model performance was similar to the one of the original model (Fig 2G and

2H). These data provide an external validation of our predictive model for early DR risks.

Fig 1. Spontaneous ERG-based random forest model discriminates control and disease cases in rodent models of obesity and type 1 diabetes and

predicts disease evolution in the type 1 diabetes model. Illustrative spontaneous ERGs and wavelet analysis in A, control versus high-fat diet-fed mice

(n = 75 and n = 75, respectively), C, lean versus spontaneously obese Neotomodon alstoni mice (n = 20 and n = 20, respectively), and E, control and

streptozotocin-treated rats (n = 40 and n = 40, respectively) in the 0.1–10 Hz range, under photopic conditions. ERG signals were normalized. Graphs

show the average scalogram power ± s.e.m. throughout 1-minute recordings. The square brackets with the Roman numerals indicate the consistent

peaks observed in each control condition. In the high-fat diet-induced obesity model, 0.1–0.8 (Low, L), 1–1.8 (M1, mid-low), and 2–4 Hz (M2, mid)

bands were considered; 0.1–0.6 (I), 0.6–1 (II), and 1–1.7 (III) Hz bands in the spontaneous model of obesity, and 0.2–0.6 (I) and 0.6–2.5 (II) Hz bands

in the type 1 diabetes model. AUC (0.1–10 Hz) and peak frequency analysis (P values were determined by unpaired Student’s t-test) of wavelet graphs in

B, the high-fat diet-induced obesity D, the spontaneous model of obesity, and F, the type 1 diabetes models. Graphs show mean ± confidence interval.

ROC curves and confusion matrix with performance measures for binary predictions (control vs. experimental cases) using the 0.1–10 Hz power

spectra of G, control and high-fat diet-fed mice (n = 15 and n = 15, respectively), H, lean and spontaneously obese Neotomodon alstoni mice (n = 4 and

n = 4, respectively), and I, control and streptozotocin-treated rats (n = 8 and n = 8, respectively). S, sensitivity; Sp., Specificity; NPV, negative predictive

value; Ac., accuracy. J, Confusion matrix of multiclass prediction for the machine learning algorithm that discriminates between control and diseased

rats at week 4, 6, 8, or 12 post-streptozotocin injection. Each column represents the instances in a predicted class, and rows represent the instances in an

actual class. We used controls at week 4, 6, 8, and 12 (n = 8 at each time point).

https://doi.org/10.1371/journal.pone.0278388.g001
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Interestingly, when we fed our model with the power spectra from ERGs registered with one

and same device (762 aleatory fragments of one-minute duration extracted from 173 ERGs

registered from a total of 237 patients (Table 3, 173 eyes)), the predictive model performed

greatly (AUC-ROC = 0.926, Fig 2J) and is accurate in 86.6% of the cases (Fig 2K). The predic-

tion precision is 89.8%; the model shows 82.8% sensitivity and a specificity of 90.4% (Fig 2K).

During the model implementation, we found that the random forest-based model outper-

formed other models based on other algorithms, including linear and radial support vector

machines (S3A and S3B Fig) and deep learning (not shown). We also sought the best perfor-

mance for the shortest ERG window and lighting conditions to optimize setting conditions.

The greatest prediction performance was established for spontaneous photopic ERGs of 60 s

(S3C–S3E Fig).

Case labeling relies on expert’s knowledge. When we compared our model predictions with

the predictions made by medical experts, our model underperformed in terms of precision

(0.361) but was consistent in recall (0.867) (Fig 2I). This, when experts only access full eye exami-

nations (Fig 2I). Our model performance slightly improved (precision 0.444) in case experts had

access to reference tests to diagnose potential diabetes (Fig 2I). Our model was close to the judge-

ments of experts in ophthalmology if, in addition to eye examination, they had access to labora-

tory (glycemia, HbA1c levels, HOMA-I, and lipid profile) and non-laboratory (blood pressure,

weight and waist circumference, and body mass index (BMI)) tests (Fig 2I). In the three contexts,

our model showed a good recall, referring to few false negatives −cases our model would classify

as healthy that are not− (Fig 2I). The fact that our model recognized disease cases with less infor-

mation than experts prompted us to look closely at cases of errors in our model in all three con-

texts (only complete eye exam, the latter plus reference blood test; the latter two plus specific tests

for metabolic profile). It appeared that error cases are false positives (low precision), indicating

that our model “incorrectly” labeled cases as positive (or diseased) that were labeled as negative by

experts. But are these negative labels from experts truly negative? Experts classified them as “with

no retinopathy” based on eye examination, while deeper blood tests revealed that these “negative

cases” present risk factors for DR. These data demonstrate that our model can predict early risk

factors for DR with less information than experts, outperforming them.

Statistical explanation for the spontaneous ERG-based model of prediction

for preventable risks of type 2 diabetes and thereby DR

When we implemented a multiclass model encompassing all risk stages for diabetes and DR,

classification performance reached 66% (Fig 3A). The largest errors of our model consisted in

Fig 2. Spontaneous ERG oscillations help predict the disease in patients with early risk factors of DR. A, Illustrative signals from spontaneous

ERGs of control subjects and patients with overweight (OW), obesity, metabolic syndrome (MetS), and diabetes but no DR (DM no DR) under

photopic conditions. Signals are normalized. Wavelet analysis for B, each group separately and C, combining all unhealthy conditions into one disease

group. Control group is defined in Methods. Graphs show the average scalogram power ± s.e.m. throughout 20-second recordings between 0.3–40 Hz

(host graph) and 0.3–2 (I), 10–20 (II), and 20–40 (III) Hz (inset graphs), where consistent peaks were observed in the control group. D, AUC and

peak frequency analysis in the I, II, and III bands of wavelet power spectra from control and disease groups (P values were determined by unpaired

Student’s t-test). Graphs show mean ± confidence interval. E, ROC curve and F, confusion matrix with performance measures for the Random Forest

model discriminating control from disease cases in control and disease groups, using the 0.3–40 Hz power spectra. G, ROC curve and H, confusion

matrix with performance measures corresponding to the validation of our predictive model thanks to an external and independent validation dataset.

I, Classification performance of our model versus experts, when experts have access to full eye examination alone or combined with reference tests to

diagnose diabetes (fasting glycemia, creatinine, triglycerides, and cholesterol) or full laboratory (glycemia, HbA1c levels, HOMA-I, and lipid profile)

and non-laboratory (blood pressure, weight and waist circumference, and BMI) tests. Precision, recall, and F1-score are reported. I, ROC curve and J,

confusion matrix with performance measures corresponding to the performance of our predictive model using ERG-derived power spectra recorded

by only one ERG device. In A-F and I, control (metabolically healthy, n = 80) and disease (OW, n = 40; obese, n = 14; MetS, n = 66; and diabetes with

no DR, n = 68) groups. In G, H, control (metabolically healthy, n = 11) and disease (OW, n = 5; obese, n = 3; MetS, n = 3; and diabetes with no DR,

n = 3) groups. In J, K, control (metabolically healthy, n = 37) and disease (OW, n = 18; obese, n = 8; MetS, n = 42; and diabetes with no DR, n = 33)

groups. S, sensitivity; Sp., Specificity; NPV, negative predictive value; Ac., accuracy.

https://doi.org/10.1371/journal.pone.0278388.g002
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Fig 3. Multiclass prediction of people at risk of developing type 2 diabetes and DR using the spontaneous ERG-based random forest model:

Explanatory data analysis. A, Multiclass confusion matrix for the prediction of control, overweight (OW), obesity, MetS, and diabetes with no DR (DM no

DR) once the first binary classification (control vs. disease) was done using the Random Forest model. Data from Tables 1 and 2 were pooled and aleatory

divided in a training (80%) and test (20%) set. B, Separation of control, overweight, obese, metabolic syndrome, and diabetes (DM) without DR cases using

PCA and C, corresponding biplot of PC1 and PC2, using 13 variables: normalized power of the slowest oscillations (0.3–0.8 Hz), the AUC of the 0.3–40 Hz

band (0.3–40 Hz AUC), and the peak frequency of the 20–40 Hz band (20–40 Hz PF). D, Separation of control, overweight, obese, metabolic syndrome, and

diabetes (DM) without DR cases using PCA and E, corresponding biplot of PC1 and PC2, using 20 variables: normalized power of 0.4–0.7 Hz activities, TG,

CT, fasting blood glucose (BG), LDL, systolic blood pressure (SBP), VLDL, age, body weight (BWT), hip and waist circumferences (HC and WC,

respectively), HDL, insulinemia (Ins.), and diastolic blood pressure (DBP). Table (right) shows variable contributions to the first and second principal
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classifying obesity into more advanced states and some overweight cases into controls

(Fig 3A).

To gain insights into the discrimination between groups, we performed explanatory statisti-

cal analyses. We considered the variables with higher variability (detailed in Methods), includ-

ing the normalized power of the slowest oscillations (0.3–0.8 Hz), the AUC of the 0.3–40 Hz

band, and the peak frequency of the 20–40 Hz band. Measurements of the considered plasma

and body variables significantly differed between control and disease groups (Tables 1 and 2),

no significant change in the power of slow frequency spontaneous oscillations of the ERG was

detected, the peak frequency in the 20–40 Hz band increased in the disease group (Fig 2B and

2D). The initial evaluation of the utility of these variables in separating control and disease

groups was accomplished by examining their natural partitioning using Principal Component

Analysis (PCA). When only using variables related to spontaneous ERG oscillations, no sepa-

ration of all groups was observed, but control cases tend to cluster (Fig 3B). PC1 and PC2

explained 69% of the data set variance, powers of 0.6–0.7 Hz oscillations correlate with the

AUC of the 0.3–2 and 0.3–40 Hz bands and had the largest contributions to PC1 (Fig 3C). The

separation of the control group could be better appreciated when spontaneous ERG oscilla-

tion-related variables were combined with body variables like triglyceridemia, total cholesterol

levels, fasting blood glucose, very low-, low-, and high-density lipoprotein cholesterol, systolic

and diastolic blood pressure, age, body weight, hip and waist circumferences, and insulinemia.

PC1 and PC2 explained 47% of the data set variance (Fig 3D). According to our PCA results,

the normalized power of the slowest oscillations (from 0.4 to 0.7 Hz) was the most important

in separating disease cases from controls as they had the largest contributions to PC1 (Fig 3D).

Plasma triglycerides, total cholesterol, low- and high-density lipoprotein cholesterol, fasting

blood glucose, insulin, systolic blood pressure, age, and hip circumference, were the least

important in this regard (Fig 3D). Based on visual inspection of the PC1/PC2 biplot (Fig 3E),

we refined our PCA analysis to variables related to spontaneous ERG oscillations (from 0.7 to

0.8 Hz, the peak frequency in the 20–40 Hz band, and the AUC of the 0.3–40 Hz band) that

were non-orthogonal with body-related variables (age, fasting blood glucose levels, and total

cholesterol), but PCA did not show a better separation of disease and control cases (Fig 3F).

We finally used linear discriminant analysis since it is geared towards the discrimination

between user-defined groups [58]. As shown in the confusion matrix of the best performances

we found for discriminating control (76%), risk factors for diabetes (78%), and diabetes (60%)

cases (Fig 3G), this relative success required the combination of body metrics in addition to

spontaneous ERG oscillation-related variables.

Discussion

The clinical community is experiencing an explosion of machine learning-guided (tele)diag-

nostics, particularly in the context of detecting treatment-requiring DR, and the positive

impact on care delivery is becoming evident [59, 60]. Risk-scoring algorithms for undiagnosed

diabetes are also available [61], but there is no such approach for the main risk factors of type 2

diabetes, i.e., overweight, obesity, and MetS with not yet diabetes. The purpose of screening

such conditions resides in well-established data about their preventability with adopting

healthy lifestyle behaviours [62], and because people of normal weight are not always

components. F, Separation of control, overweight, obese, metabolic syndrome, and diabetes (DM) without DR cases using PCA, using 8 variables: normalized

power of 0.7 to 0.8 Hz activities, the peak frequency in the 20–40 Hz band, the AUC of the 0.3–40 Hz band, age, BG, CT. G, Confusion matrix corresponding

to the linear discriminant analysis to separate control, diabetes risk factors (overweight, obesity, and MetS, n = 168), and diabetes (DM) without DR groups.

From B to G, control (n = 62), overweight (OW, n = 66), obese (n = 17), metabolic syndrome (MetS, n = 85), and diabetes (DM) without DR (n = 41).

https://doi.org/10.1371/journal.pone.0278388.g003
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metabolically healthy [63] and at the opposite, the obesity phenotype can associate with no or

little evidence of metabolic dysfunction [64]. We have exploited the potential of non-invasive,

quantitative, and objective ERG by introducing a new and simple modality to record sponta-

neous activity of the retina, and combined it with a supervised machine learning-based model

to predict early risk factors of type 2 diabetes, and thereby DR. Our data support the robustness

of the random forest system in the screening of early risk factors for type 2 diabetes, and imply

its translation into clinical use thanks to automated platforms like the one we created (http://

deepretinopathydx.inb.unam.mx/). Our findings also highlight a very early impact of systemic

metabolic changes in spontaneous signals from the central nervous system and add to the

growing list of evidence that show retinal neurodegeneration as an early event in DR patho-

genesis [65].

Strengths and interpretation of spontaneous ERG signals’ predictive

content

We found that the spontaneous oscillations detected by non-evoked ERG are a quantifiable

biological parameter that is modified under conditions related to an excess of body weight.

These alterations were not accompanied by changes in OPs in high-fat diet-fed mice and in

people with overweight, obesity, and MetS. These observations are consistent with previous

studies in animal models [66, 67], but contrast with data showing reduced OP amplitude in

high-fat diet-fed mice [68] or in ob/ob mice [69]. These discrepancies may be attributed to the

different induction mechanisms of obesity, known to result in models with their own charac-

teristics [38, 70]. Particularly, our high-fat diet is more enriched in lipids than carbohydrates

[68]. While the ERG B-wave is affected in patients with obesity [71, 72], there is no previous

report of the effect of obesity on OPs in humans. In patients with diabetes but no DR, the

amplitude and implicit time of the OPs tend to decrease and increase, respectively, as previ-

ously reported [73]. In general, these data agree with a view that the spontaneous activity of

the retina may replace OPs [55], by becoming the most precociously altered functional param-

eter in stages previous to diabetes. In further agreement with this, is our finding that the spon-

taneous ERG oscillation-related component score does not correlate with either OP

parameters nor DR score that reflects the risk of requiring intervention within 3 years [48].

The OPs are thought to reflect the function of the inner retina and are sensitive to changes

in retinal circulation [73]. In this sense, one may wonder about the nature of spontaneous

oscillations measured by non-evoked ERG. If ERG is classically conceived as the summation of

local synaptic and intrinsic activities of retinal cells, the low amplitude and slow frequency

oscillations recorded in the non-evoked mode may be contaminated by sources other than the

retina, e.g., cardiorespiratory system and brain. In humans, with our setup setting, breathing is

too slow (~0.2–0.3 Hz) [74] to be detected by ERG, as is eye movement (0.26 Hz) [75], but car-

diac (0.9–1.4 Hz) [76] and brain activities may be. Also, in stably anesthetized mice, respiration

is in the 0.9–1.08 Hz range, while cardiac rhythm lies between 5 and 7.5 Hz. In ketamine-xyla-

sine-anesthetized rats, eye movement shows two frequency components, 1 and 12.2 Hz, the

former correlating with respiration frequency [77]. We cannot ascertain that the full range of

spontaneous oscillations measured by non-evoked ERG originates in the retina, but it is plausi-

ble that at least part of these signals come from the retina because in healthy adult retinas, sev-

eral types of neurons have been reported to spontaneously oscillate, and this, within a range of

frequencies from 0.7 to>10 Hz. In particular, spontaneous Ca2+-dependent membrane oscil-

lations have been recorded in bipolar cell axon terminals [24, 25, 78] and if the consequent pul-

satile release of neurotransmitter drives rhythmic activity in post-synaptic neurons, including

amacrine and ganglion cells [23, 79], different types of amacrine cells are also able to produce
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intrinsic oscillatory activity [26, 27]. Low-amplitude oscillations have even been recorded in

starbust amacrine cells [23]. The presence of these intrinsic oscillators in the inner retina [23–

27, 78, 79], the fact that retinal neurons can be electrically coupled [80], and the large-scale net-

work interactions happening in the retina [22] are likely to result in spontaneous fluctuations

of the field potential [81] in this tissue. Consistent with the existence of bipolar/amacrine cell

oscillators and our findings showing that spontaneous activity is altered in the high-fat diet-

induced obesity, spontaneous obesity, and streptozotocin-induced type 1 diabetes models,

inner retinal deficits have been detected at the onset of diabetes [33, 82, 83]. Overall, we found

reduced peak frequencies of the low range activities (0.2–2.5 Hz), which is agreement with

decreased inhibition in the early diabetic retina [33, 84–88]. Also in favor of part of the sponta-

neous oscillations detected by the non-evoked ERG being produced in the retina is the recent

finding that DR can be detected by machine learning processing of electrooculogram (EOG)

signal—corresponding to the potential difference between cornea and retina—[89].

Though studies of spontaneous retinal activity are sparse in the adult and its functional role

is yet to be fully understood [90], our results support that the 0.3–40 Hz activity is relevant for

the disease process. Our data show that a single model is able to distinguish disease cases from

control cases under disease-relevant conditions that range from rodent models to patients.

This suggests that the predictive content of spontaneous ERG signals is conserved in mammals

and robust. Our PCA analysis adds to this view, because it showed that the normalized powers

of the slowest oscillations (0.4–0.7 Hz) were the most important variables in separating disease

cases from controls. Nevertheless, changes in spontaneous ERG oscillations of higher variabil-

ity were insufficient to separate the groups of interest using PCA. Compared to the PCA that

does the separation in a single step, the Random Forest model does it in several stages, that is,

it first classifies the disease and control cases and then, in the disease category, classifies the

four groups of interest, which surely contributes to its performance compared to that of PCA.

There is also the algebraic limitation of PCA which cannot process more variables (823 in

total) than the number of individuals (375, Tables 1 and 2). We do not exclude the possibility

that the frequency variables analyzed by PCA may explain the multigroup separation once the

number of participants exceeds the number of variables. The statistical analyses we undertook

for an explanation gave us some hints: the normalized power of the slowest oscillations (from

0.3 to 0.5 Hz) and the peak frequency of the 20–40 Hz band did not correlate with the power

of the 0.6–0.8 Hz components or with the AUC of the 0.3–2 and 0.3–40 Hz bands. However,

we do not have yet enough data to understand in details how our predictive model uses spon-

taneous ERG data and the fact that it surpassed so-called "black box" algorithms such as deep

learning, does not yet represent an advantage in terms of intelligibility of our model [91]. Even

though we cannot explain yet the specific loadings of each variable and we do not exclude the

contribution of other variables, our findings support a very tight relationship between systemic

metabolic changes and retinal function [92].

Our predictive diagnostic system meets the Food and Drug Administration criteria in

terms of precision (� 85%), sensitivity (� 85%), and specificity (� 82.5%) for clinical valida-

tion of diagnostic tools in retina [93, 94] and the validated ROC of 0.719 alsmot indicates

excellent clinical accuracy [95]. It performed as good as experts in identifying disease cases,

but without the need for invasive study data. Our PCA data abound in this direction since

additional variables to the spontaneous oscillations of the ERG such as VLDL, body weight,

diastolic blood pressure and waist circumference, are necessary to better separate the control

from disease groups. Importantly, accuracy is maintained when using signals from different

sensors, which also accounts for the robustness of our system. It is well known that data from

different sources penalize the performance of prediction models [96]. Moreover, the fact that

spontaneous ERG protocols could be developed on three commercial sensors and that the
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predictive potential of these signals is shown here illustrates that our system is flexible and can

be adapted to any ERG apparatus. Also, we found that predictions are better with photopic

recordings, which is advantageous in clinical practice because they take much less time than

the dark-adapted ones. Based on our practical experience, we specify that 2 to 5 minutes of

high signal/noise ratio recordings are enough to obtain the spontaneous 1-minute ERG

sequences that, according to our data, are informative. Furthermore, the notion that the spon-

taneous oscillations detected by non-evoked ERG are the most precociously altered functional

parameter in prediabetic stages is highly relevant in clinical practice, because OPs can only be

extracted from scotopic ERG [47]. Therefore, having access to such a parameter without the

need for adaptation to darkness and light flash represents a definite advantage for the patient

(no pupillary dilalation, faster examination [47]). For the above and because it considers exist-

ing resources in terms of ERG device, works with completely non-invasive, portatile and cost-

effective ERG devices, and does not require ophthalmological experts, our system has easy

applicability in clinical settings. In our hands, the net monetary cost of a non-evoked ERG test

using a portatile ERG device is less than 15 USD, and it should be noted that portable, non-

mydriatic devices are about three times cheaper than desktop devices.

The clinically relevant information our system contributes to, is to detect people with pre-

ventable risk factors for type 2 diabetes. Even though the Diabetes Prevention Program

recently reported that interventions that delay the development of type 2 diabetes in those at

risk (overweight/obese with dysglycemia) do not reduce the subsequent prevalence of DR [97],

this concerns people who have progressed to diabetes. In cases where intensive lifestyle inter-

vention and metformin managed to prevent progression to type 2 diabetes, DR does not hap-

pen [97]. In this regard, it is important to recognize that lifestyle interventions must be carried

out with considerable involvement of clinicians and that acheiving awareness among patients

and family relatives is challenging.

Limitations and future work

The advantages of our predictive diagnostic system—such as increased objectivity and effi-

ciency in determining early risk factors for type 2 diabetes, and thereby DR, by the Random

Forest system compared with health-care professionals, higher referral adherence from real-

time point-of-care screening recommendations [60], more efficient resource allocation

towards prevention and treatments due to the Random Forest system offloading tasks from

human graders, and reduction in the prevalence of RD in the mid to long term—are implied

but unproven. Also, although translation of our system into clinics seems feasible, real-world

testing and acceptation is in its infancy. We have provided external validation of our system,

but future data from multiethnic populations should consolidate the validation of our model.

In the same line, machine learning models have the disadvantage of dealing with the problem

on which they were trained. If our findings in the streptozotocin-induced diabetes model sug-

gest that our predictive model may be useful for disease follow-up, testing more severe grades

of DR and other retinal disorders, is needed to provide a multiclass prediction model with

acceptable performance in an unselected population. This will also help clarify if altered spon-

taneous ERG oscillations are a general biomarker of neurodegenerative retinal disfunction.

An additional crucial step is to compare our system with more gold standards of early DR,

like the multifocal ERG implicit time [98], and to determine whether the spontaneous 0.1–10

Hz oscillations in rodents and between 0.3–40 Hz in humans respond to a therapeutic inter-

vention [99]. Showing altered peak frequencies and high degrees of prediction of these features

only suggests that they are necessary for the early process of the diabetic eye desease [100, 101].

Deciphering pathological mechanisms responsible for these alterations will be highly
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informative about early etiology of DR and may benefit the development of therapeutic

options. Additional work is also needed to address the mechanisms that govern the slow spon-

taneous ERG signal.

Conclusions

Our ultimate goal is to provide an effective, large-scale, easy, and affordable screening method

that identifies asymptomatic patients in avoidable stages of type 2 diabetes to enable personal-

ized preventive action. The state-of-the-art performance of our unique approach will likely

contribute to improving the reputation of ERG [102], putting it at the right place in the clinical

scene, as a quick, easy to administer and interpret, and relevant tool for screening not only

ocular diseases, but also preventable risk factors for type 2 diabetes.

Supporting information

S1 Fig. Metabolic follow-up of animal models and oscillatory potential analysis. A, Follow-

up of body weight and blood glucose levels, glucose tolerance test, and insulin tolerance test in

control-diet (n = 75) and high-fat diet-fed (n = 75) mice for 12 weeks. B, Body weight, blood

glucose levels, glucose tolerance test, and insulin tolerance test in lean (n = 20) and spontane-

ously obese (n = 20) Neotomodon alstoni mice. In both models, mice have higher glycemia

than control mice at every time point (P< 0.05), suggesting reduced insulin sensitivity. This

was confirmed by insulin tolerance tests, which showed a lower fall in blood glucose in

response to insulin in obese mice as compared with control mice. C, Blood glucose level fol-

low-up in rats after 4, 6, 8, or 12 weeks of streptozotocin (n = 40) and vehicle (n = 40) treat-

ment. Values, mean ± s.d. � indicates P values< 0.05 determined by a two-sample Student’s t-
test in B (body weight and glycemia) and by a mixed ANOVA followed by Bonferroni test

everywhere else. D, Illustrative ERG (top) and oscillatory potentials (OP, bottom) in control-

diet and high-fat diet-fed mice for 12 weeks, measured in response to a light flash of 7.72 (cd.

s)/m2 (arrow) under dark-adapted conditions. E, Temporal monitoring (0 to 12 weeks, as indi-

cated) of the average amplitude and implicit time of OP1, OP2, OP3, and OP4 in control

(n = 10) and high-fat diet fed mice (n = 12) under dark-adapted conditions at increasing light

intensities (0.02, 0.24, 2.45, and 7.72 (cd.s)/m2. CD, control diet. HFD, high-fat diet. n.s., not

significant (P> 0.05).

(TIF)

S2 Fig. Oscillatory potentials and DR score analysis in people with early risk factors for

DR, and correlation with slow frequency spontaneous ERG oscillation power. A, Illustrative

recording from the ISCEV DA 3 ERG protocol in a control case. N1-P1 and P1-N2 B, ampli-

tude and C, peak time ratio in control (metabolically healthy, n = 8) and disease (OW, n = 5;

obese, n = 2; MetS, n = 6; and diabetes with no DR, n = 61) groups. D, DR score in control

(metabolically healthy, n = 74) and disease (OW, n = 22; obese, n = 18; MetS, n = 88; and dia-

betes with no DR, n = 109) groups. B-D, Graphs show mean ± confidence interval. Correlation

analysis between the E, N1-P1 or P1-N2 amplitude ratio, F, N1-P1 or P1-N2 peak time ratio,

and G, DR score with the spontaneous oscillation (SO) PCA score (detailed in Methods) in the

groups of interest.

(TIF)

S3 Fig. Random forest model performs better than support vector machine algorithms

and when it primarily uses spontaneous photopic ERG of 60-s duration in humans. A,

ROC curves for both linear and radial svm algorithms. B, Performance parameters for the ran-

dom forest model using power spectra from photopic or mesopic ERGs of 10, 30 or 60 s. C,
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ROC curves for the random forest model using power spectra from photopic, mesopic or com-

bined photopic and mesopic ERGs of 60 s. D, Corresponding performance parameters. All

data correspond to binary classification between control and disease cases. Controls are consti-

tuted by metabolically healthy subjects (n = 62) and the disease group by patients with over-

weight (n = 41), obesity (n = 16), metabolic syndrome (n = 55), and diabetes with no DR

(n = 63).

(TIF)
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Formal analysis: Ramsés Noguez Imm, Julio Muñoz-Benitez, Diego Medina, Pamela Reyes-

Ortega, Leticia Medrano-Gracia, Gerardo Rojas-Piloni, Stéphanie C. Thébault.

Funding acquisition: Stéphanie C. Thébault.
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71. Erkaymaz O, Senyer Yapici Í, Uzun Arslan R. Effects of obesity on time-frequency components of

electroretinogram signal using continuous wavelet transform. Biomedical Signal Processing and Con-

trol. 2021; 66: 102398. https://doi.org/10.1016/j.bspc.2020.102398

72. Yapici İS, Erkaymaz O, Arslan RU. A hybrid intelligent classifier to estimate obesity levels based on

ERG signals. Physics Letters, Section A: General, Atomic and Solid State Physics. 2021; 399:

127281. https://doi.org/10.1016/j.physleta.2021.127281

73. Wachtmeister L. Oscillatory potentials in the retina: What do they reveal. Progress in Retinal and Eye

Research. 1998; 17: 485–521. https://doi.org/10.1016/s1350-9462(98)00006-8 PMID: 9777648

74. Zelano C, Jiang H, Zhou G, Arora N, Schuele S, Rosenow J, et al. Nasal respiration entrains human

limbic oscillations and modulates cognitive function. Journal of Neuroscience. 2016; 36: 12448–

12467. https://doi.org/10.1523/JNEUROSCI.2586-16.2016 PMID: 27927961

75. Takahashi K, Atsumi Y. Precise Measurement of Individual Rapid Eye Movements in REM Sleep of

Humans. Sleep. 1997; 20: 743–752. https://doi.org/10.1093/sleep/20.9.743 PMID: 9406327

76. Mason JW, Ramseth DJ, Chanter DO, Moon TE, Goodman DB, Mendzelevski B. Electrocardiographic

reference ranges derived from 79,743 ambulatory subjects. Journal of Electrocardiology. 2007; 40:

228–234.e8. https://doi.org/10.1016/j.jelectrocard.2006.09.003 PMID: 17276451

77. Nair G, Kim M, Nagaoka T, Olson DE, Thulé PM, Pardue MT, et al. Effects of common anesthetics on

eye movement and electroretinogram. Documenta Ophthalmologica. 2011; 122: 163–176. https://doi.

org/10.1007/s10633-011-9271-4 PMID: 21519880

PLOS ONE Spontaneous ERG-based screening tool for type 2 diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0278388 January 12, 2023 24 / 26

https://doi.org/10.1038/s41598-022-07829-6
https://doi.org/10.1016/S2589-7500%2822%2900027-9
https://doi.org/10.1016/S2589-7500%2822%2900027-9
http://www.ncbi.nlm.nih.gov/pubmed/35272973
https://doi.org/10.1016/j.xops.2022.100168
https://doi.org/10.1016/j.xops.2022.100168
https://doi.org/10.7326/0003-4819-151-11-200912010-00005
http://www.ncbi.nlm.nih.gov/pubmed/19949143
https://doi.org/10.1093/nutrit/nux014
http://www.ncbi.nlm.nih.gov/pubmed/28521334
https://doi.org/10.3390/ijerph19020624
http://www.ncbi.nlm.nih.gov/pubmed/35055447
https://doi.org/10.1210/endrev/bnaa004
https://doi.org/10.1007/s00125-018-4692-1
http://www.ncbi.nlm.nih.gov/pubmed/30030554
https://doi.org/10.1002/mnfr.202100823
http://www.ncbi.nlm.nih.gov/pubmed/35306732
https://doi.org/10.3390/cells9020464
http://www.ncbi.nlm.nih.gov/pubmed/32085589
https://doi.org/10.2337/db15-1255
http://www.ncbi.nlm.nih.gov/pubmed/26740595
https://doi.org/10.1007/s00125-018-4696-x
https://doi.org/10.1007/s00125-018-4696-x
http://www.ncbi.nlm.nih.gov/pubmed/30094465
https://doi.org/10.1038/oby.2007.608
https://doi.org/10.1038/oby.2007.608
http://www.ncbi.nlm.nih.gov/pubmed/17426312
https://doi.org/10.1016/j.bspc.2020.102398
https://doi.org/10.1016/j.physleta.2021.127281
https://doi.org/10.1016/s1350-9462%2898%2900006-8
http://www.ncbi.nlm.nih.gov/pubmed/9777648
https://doi.org/10.1523/JNEUROSCI.2586-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27927961
https://doi.org/10.1093/sleep/20.9.743
http://www.ncbi.nlm.nih.gov/pubmed/9406327
https://doi.org/10.1016/j.jelectrocard.2006.09.003
http://www.ncbi.nlm.nih.gov/pubmed/17276451
https://doi.org/10.1007/s10633-011-9271-4
https://doi.org/10.1007/s10633-011-9271-4
http://www.ncbi.nlm.nih.gov/pubmed/21519880
https://doi.org/10.1371/journal.pone.0278388


78. Zenisek D, Matthews G. Calcium action potentials in retinal bipolar neurons. Visual Neuroscience.

1998; 15: 69–75. https://doi.org/10.1017/s0952523898151064 PMID: 9456506

79. Vigh J, Solessio E, Morgans CW, Lasater EM. Ionic mechanisms mediating oscillatory membrane

potentials in wide-field retinal amacrine cells. Journal of Neurophysiology. 2003; 90: 431–443. https://

doi.org/10.1152/jn.00092.2003 PMID: 12649310

80. Trenholm S, Awatramani GB. Myriad roles for gap junctions in retinal circuits. Webvision: The Organi-

zation of the Retina and Visual System. University of Utah Health Sciences Center; 1995. Available:

http://www.ncbi.nlm.nih.gov/pubmed/31765113

81. Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons.

Trends in Neurosciences. Elsevier Ltd; 2000. pp. 216–222. https://doi.org/10.1016/s0166-2236(00)

01547-2 PMID: 10782127

82. Calbiague VM, Vielma AH, Cadiz B, Paquet-Durand F, Schmachtenberg O. Physiological assessment

of high glucose neurotoxicity in mouse and rat retinal explants. Journal of Comparative Neurology.

2020; 528: 989–1002. https://doi.org/10.1002/cne.24805 PMID: 31674018

83. Nishimura C, Kuriyama K. Alterations in the Retinal Dopaminergic Neuronal System in Rats with

Streptozotocin-Induced Diabetes. Journal of Neurochemistry. 1985; 45: 448–455. https://doi.org/10.

1111/j.1471-4159.1985.tb04008.x PMID: 3925083

84. Moore-Dotson JM, Eggers ED. Reductions in calcium signaling limit inhibition to diabetic retinal rod

bipolar cells. Investigative Ophthalmology and Visual Science. 2019; 60: 4063–4073. https://doi.org/

10.1167/iovs.19-27137 PMID: 31560762

85. Moore-Dotson JM, Beckman JJ, Mazade RE, Hoon M, Bernstein AS, Romero-Aleshire MJ, et al. Early

retinal neuronal dysfunction in diabetic mice: Reduced light-evoked inhibition increases rod pathway

signaling. Investigative Ophthalmology and Visual Science. 2016; 57: 1418–1430. https://doi.org/10.

1167/iovs.15-17999 PMID: 27028063

86. Castilho Á, Madsen E, Ambrósio AF, Veruki ML, Hartveit E. Diabetic hyperglycemia reduces Ca 2+

permeability of extrasynaptic AMPA receptors in AII amacrine cells. Journal of Neurophysiology.

2015; 114: 1545–1553. https://doi.org/10.1152/jn.00295.2015 PMID: 26156384
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