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19 Abstract 
20 Diabetic Macular Edema (DME) is the most common sight-threatening complication of type 2 diabetes. 

21 Our goal was to develop an alternative method to optical coherence tomography (OCT) for DME diagnosis 

22 by introducing spectral information derived from spontaneous electroretinogram (ERG) signals as a single 

23 input or combined with eye fundus. To this end, an observational study was completed (n = 233 

24 participants). Basal ERGs were used to generate scalograms and spectrograms via Wavelet and Fourier 

25 transforms, respectively. Using transfer learning, distinct Convolutional Neural Networks (CNN) were 

26 trained as classifiers for DME using OCT, scalogram, spectrogram, and fundus images. Input data were 

27 randomly split into training and test sets with a proportion of 80 % to 20 %, respectively. The top 

28 performers for each input type were selected, OpticNet-71 for OCT and DenseNet-201 for fundus and 

29 non-evoked ERG-derived scalograms, to generate a combined model by assigning different weights for 

30 each of the selected models. Model validation was performed using a dataset alien to the training phase 

31 of the models. None of the models powered by non-evoked ERG-derived input performed well. Metrics 

32 of the best hybrid models were all above 0.81 for fundus combined with non-evoked ERG-derived 

33 information; and above 0.85 for OCT combined with non-evoked ERG-derived scalogram images. These 

34 data show that the spontaneous ERG-based model improves all the performance metrics of the fundus 

35 and OCT-based models, with the exception of sensitivity for the OCT model, to predict DME. Combining 

36 non-evoked ERG with OCT represents an improvement to the existing OCT-based models, and combining 

37 non-evoked ERG with fundus is a reliable and economical alternative for the diagnosis of DME in 

38 underserved areas where OCT is unavailable.
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39 Author summary
40 Providing an alternative diagnostic method to those that already exist for diabetic macular edema (DME) 

41 that is reliable and physically and economically accessible is needed in places where optical coherence 

42 tomography (OCT) is unavailable. In this work, we combined artificial intelligence (AI) classifying 

43 techniques with information from a newly introduced signal that can be captured in a non-invasive 

44 manner, the spontaneous oscillations of the electroretinogram (ERG). We found that if these signals alone 

45 are ineffective in diagnosing DME cases, they improve the performance of AI models based on either eye 

46 fundus or OCT in the prediction of DME. We therefore conclude that combining spontaneous ERG with 

47 fundus, which is a basic optometric test even in underserved areas, represents a reliable alternative to 

48 OCT for the diagnosis of DME. Also, combining OCT with spontaneous ERG signals will help ameliorate the 

49 diagnosis of DME. 
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50 Introduction
51 Affecting 8.8 % of the world population and with an estimated number of cases reaching 783 million by 

52 2045, type 2 diabetes is a modern pandemic (1,2). Diabetic macular edema (DME), characterized by the 

53 accumulation of exudative fluid in the macula, is the most common form of retinopathy that threatens 

54 vision in people with type 2 diabetes (3). DME is the leading cause of vision loss in diabetic individuals 

55 from 20 to 74 years-old (4). In Mexico, its prevalence has been estimated at 6.6 %, but most importantly, 

56 DME risk has been found to increase in the early stages of diabetes (5). As a major source of disability, it 

57 is, therefore, necessary to find alternative diagnostic methods to those already existing that are effective, 

58 accessible, and economical.

59 Artificial intelligence (AI) algorithms, particularly the start-of-the-art, continuously improving, machine 

60 learning techniques are generating enormous interest in diagnosing various diseases (6). In this context, 

61 AI algorithms known as convolutional neural networks (CNN) have been applied to the analysis of medical 

62 images, showing robust performance in the diagnosis and detection of conditions such as pulmonary 

63 tuberculosis from chest radiographs, malignant melanoma from skin photographs (6), and DME from 

64 optical coherence tomography (OCT) and fundus images (7). Even though biomicroscopy examination of 

65 the posterior pole of the eye remains the first step in DME diagnosis in many places, stereoscopic fundus 

66 photographs lack stereopsis, rendering the diagnosis unreliable (8). In contrast, OCT provides quantitative 

67 and qualitative biomarkers associated with visual and anatomical outcomes of DME (9), explaining why it 

68 largely supplanted fundus examination in DME diagnosis. However, OCT devices are the prerogative of 

69 rich countries.

70 Despite their good generalization features in various fields of medicine, CNNs come with a high 

71 computational cost and require large amounts of medical data for efficient model training (6,7). Transfer 

72 learning techniques address this issue by using pre-trained CNNs with millions of images of a different 

73 nature (e.g., ImageNet dataset (10)), transferring the weights obtained from this process, and training the 
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74 network on a smaller dataset (6). Moreover, the development of hybrid models in AI (11), has enabled 

75 the use of different types of algorithms or different data sources with similar algorithms to generate more 

76 performant models (11,12).

77 In this study, we sought to improve the predictive power of fundus, as it is the most common DME test in 

78 the world. To this end, we took advantage of non-evoked or spontaneous electroretinogram (ERG) signals 

79 that have been recently shown to help predict risk factors of type 2 diabetes, including overweight, 

80 obesity, and metabolic syndrome (13). This is in view that ERG alterations are detected in patients with 

81 early DME (14,15), that portable devices can nowadays acquire ERG in a fully non-invasive way (16), and 

82 those 5-minute ERGs, in the absence of any light flash, that is in mock conditions, and under photopic 

83 conditions, which allows dispensing with mydriasis, is informative about early changes associated with 

84 diabetes (17).

85 We generated hybrid CNN algorithms powered by different types of data, including images of OCT, fundus, 

86 and non-evoked ERG spectrum obtained through either fast Fourier (spectrograms) or continuous wavelet 

87 (scalograms) transforms (13). Our data show that, although it is impossible to distinguish patients with or 

88 without DME using only non-evoked ERG spectral images, the performance of models using OCT and/or 

89 fundus images as input data can be improved when combined with spectral images of spontaneous ERG 

90 signals. Most notably, the hybrid model powered by fundus and mock ERG-derived wavelet scalogram 

91 images performs as well as the OCT one.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.23288182doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.05.23288182
http://creativecommons.org/licenses/by/4.0/


6

92 Results
93 Mock ERG-based models for the predictive diagnosis of DME
94 We first asked whether the mock ERG signals per se help predict DME cases. To this end, two CNNs, 

95 ResNet-50, and finely tuned DenseNet-201, powered by either the FFT or the wavelet-derived mock ERG 

96 power spectrum, were tested. Figure 1A, B shows the ROC curves and confusion matrices for CNNs based 

97 on FFT-derived information, while Figure 1C, D shows prediction results based on wavelet-derived 

98 information. The performance metrics of externally validated predictions are summarized in Figure 1E. 

99 For all models, the highest performance metric is specificity, and DenseNet-201 using scalograms is the 

100 most sensitive one (Figure 1E), but none of them showed performance metrics above 0.80. 

101 In view of the poor performance of the models purely based on mock ERG-derived information to predict 

102 DME, we next analyzed whether the mock ERG transform could help improve the predictive performance 

103 of OCT and/or eye fundus images for DME. 

104

105 Hybrid models for the predictive diagnosis of DME
106 To implement hybrid models that combine mock ERG transforms, OCT, and eye fundus images, we first 

107 determined which models based on each of these entries independently were best, and then used them 

108 as inputs for the hybrid models. 

109 As previously shown, finely-tuned DenseNet-201 trained with mock ERG-derived scalograms was the least 

110 bad in predicting DME (Figure 1E). 

111 As for OCT-based models, external validation using 1,229 images from our database (Table 1) showed 

112 better results for OpticNet-71. Compared to DenseNet-201, its precision (0.93 vs. 0.52), sensitivity (0.93 

113 vs. 0.91), specificity (0.99 vs. 0.83), F1-score (0.93 vs. 0.72), accuracy (0.98 vs. 0.84), ROC AUC (0.96 vs. 

114 0.87), and Cohen’s Kappa (0.91 vs. 0.57) were largely higher (S1 figure, panels A, B, and E). Using the 164-

115 image set (Table 1) of Srinivasan et al. (23), we further confirmed that the best overall performance for 

116 the predictive diagnosis of DME is for OpticNet-71, with metrics above 0.84 (S1 figure, panels C, D, and 
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117 E). The sensitivity for DenseNet-201 was greater than the one of OpticNet-71 (0.95 vs. 0.93); nonetheless, 

118 the rest of the metrics were not (Precision: 0.85 vs. 0.63, specificity: 0.94 vs. 0.8, F1-score: 0.89 vs. 0.75, 

119 accuracy: 0.94 vs. 0.84, ROC AUC: 0.94 vs. 0.88, and Cohen’s Kappa: 0.84 vs. 0.64, respectively) (S1 figure, 

120 panels C, D, and E).

121 Table 1. Distribution and composition of the databases used. It is important to highlight that the images 

122 used for model training and testing were not used for validating the model performance. TO this end, 

123 independent images were used. Furthermore, the only datasets partially generated with data 

124 augmentation were those containing spectrograms and scalograms, but only for the DME group.

125

126 Three different models were tested for eye fundus image-based DME predictive diagnosis and externally 

127 validated with n = 164 (DME: 42, No DME: 122, Table 1). S2 figure (panel A) shows the ROC curve, 

128 confusion matrix, and performance metrics for the Resnet-50 model. At the same time, similar data are 

129 reported in S2 figure (panels B and C) for the finely tuned MobileNet-V2 and DenseNet-201 models, 

130 respectively. If ResNet-50 had a high sensitivity (0.86) and MobileNet-V2 a very high specificity (0.98), the 
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131 DenseNet-201 model obtained overall more robust performance metrics, especially for F1-Score and 

132 Cohen’s Kappa that evaluate the performance of models trained with unbalanced classes (S2 figure, panel 

133 C).

134 Next, based on the demonstration that OpcticNet-71 trained with OCT images, DenseNet-201 trained with 

135 eye fundus images, and DenseNet-201 trained with scalograms were the best individual models, we 

136 created hybrid models based on the linear combination of each individual model prediction matrices 

137 (Figure 2). All possible combinations of weight factor values were systematically analyzed, considering 

138 incremental steps of 1 %. Heat maps for performance metrics of all hybrid models are shown in Figure 3. 

139 For the hybrid model that combined both OCT and eye fundus images, the highest metrics (all above > 

140 0.87) were obtained when the weighting factor n1 was 0.60 and the n2 of 0.40 (Figure 3A), meaning that 

141 the contribution of OCT images was of 60 %, while the one of fundus images was of 40 %. In these 

142 conditions, precision reached 0.90, sensitivity 0.90, specificity 0.97, F1-score 0.90, accuracy 0.95, ROC AUC 

143 0.94, and Cohen’s Kappa 0.87.

144 For the hybrid model that combined both OCT and mock ERG-derived scalogram images, the model is 

145 optimal when the n value for OCT is 0.60 and for mock ERG 0.40 (Figure 3B), since that, in these conditions, 

146 precision reached 0.88, sensitivity 0.90, specificity 0.96, F1-score 0.89, accuracy 0.95, ROC AUC 0.93, and 

147 Cohen’s Kappa: 0.85. Most notably, these data show that including mock ERG-derived information 

148 improved the specificity, precision, Cohen’s Kappa, and accuracy of the OCT-based model (for reference, 

149 see S1 figure, panel A). 

150 For the hybrid model that combined eye fundus and mock ERG-derived scalogram images, optimization 

151 occurred in a wide range of combinations from 50 % eye fundus and above and 50 % ERG and below, 

152 respectively (Figure 3C). For example, when 70 % of the input comes from the eye fundus-based prediction 

153 and 30 % from the mock ERG-based prediction, precision reached 0.84, sensitivity 0.88, specificity 0.94, 

154 F1-score 0.86, accuracy 0.93, ROC AUC 0.91, and Cohen’s Kappa: 0.81 (Figure 3C). All above 0.8 
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155 performance metrics of the DenseNet-201 model trained with eye fundus images (S2 figure, panel C) 

156 increased when it is combined with the mock ERG model in the 70-30 % proportions, except for sensitivity. 

157 We also created triple hybrid models that combined mock ERG, fundus, and OCT image inputs, and 

158 observed that several combinations led to optimal performance metrics (Figure 3D). The most notable 

159 optimization happened when n1 = 0.60, n2 = 0.40, and n3 = 0, corresponding to the double hybrid model 

160 that combined OCT and mock ERG-derived scalogram images (Figure 3D). Nonetheless, there are other 

161 optimized combinations, like the n1 = 0.60, n2 = 0.28, and n3 = 0.12, for OCT, eye fundus, and mock ERG-

162 derived scalogram images, respectively, that reached a precision of 0.88, sensitivity of 0.90, specificity of 

163 0.96, F1-score of 0.89, accuracy of 0.95, ROC AUC of 0.93, and Cohen’s Kappa of 0.85.

164 A single heat-map included all hybrid models’ performances (Figure 4).
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165 Discussion
166 DME continues to be the leading cause of preventable blindness in the working-age population in the 

167 world (8). Therefore, early detection programs are extremely important in treating this DR complication. 

168 Introducing new imaging modalities and technological advances has facilitated both early detection and 

169 follow-up of patients with DME, particularly OCT angiography and AI. However, OCT exams are not 

170 accessible to everyone in developing countries, due to their high cost and lack of equipment. In this 

171 context, we showed that a CNN model powered by images of changes in the frequency spectrum of basal 

172 ERG signals could not be used to diagnose DME, but that the performance of OCT and fundus image-based 

173 classifiers in predicting DME can be improved by combining them with the mock ERG transform cues. 

174

175 The poor performance of our model based on mock-ERG signals alone can be explained by the state of 

176 the disease, the nature of the data, and the characteristics of the used models. At continuation, we will 

177 discuss each one of these issues.

178 DME is a complication of DR, it, therefore, develops in association with different degrees of DR, ranging 

179 from moderate non-proliferative to advanced proliferative stages (29). Furthermore, DR, classically 

180 defined as microangiopathy affecting the retinal vessels (30), is known to affect retinal neurons (31). 

181 Neuronal apoptosis begins with retinal ganglion cells but can also affect other retinal nerve cells, such as 

182 bipolar cells, amacrine cells, and photoreceptors (31). This neuronal damage can be evidenced by latency 

183 delays in multifocal ERG (32). Our training, test, and validation data contain ERG records from DME or 

184 non-DME patients diagnosed with DR to some degree. Therefore, spectral images from mock ERGs likely 

185 show similar changes in both DME and non-DME groups, confusing the models. We confirmed this 

186 scenario, since the performance metrics of the models trained to distinguish DR and no DR classes 

187 exceeded 0.60, unlike the values obtained for the validation of the DME class prediction, indicating that 

188 the concomitant presence of DR with DME takes part into the poor performance of our models. 
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189 Even though the models trained for DR classification performed better than those for DME, they are not 

190 robust enough to make a classification of sufficient quality for clinical use, which suggests that other 

191 variables, like the nature of the data and the models themselves, are influencing the classification.

192 If, to the best of our knowledge, there is no record of the relevance of basal ERG transform images for 

193 human disease prediction, previous works have reported the use of electrophysiological signals, such as 

194 EEG, transformed into spectral images to train CNNs to recognize original data from synthetic ones 

195 (33,34). As for this CNN model that performs relatively poorly (metrics of ~0.6 for EEG-derived scalograms) 

196 (34), the time-frequency representations of our data may not express the necessary or sufficient 

197 information (67). Our sampling frequency is 2 kHz, but some data may be lost when converting the original 

198 signal to a spectral image. Spectrograms with too low spatial resolution have been shown to impair 

199 predictive model performance (35). Additionally, our dataset consisting of just over 1,000 images is very 

200 small compared to the 14 million image database usually used for CNN training (34). Data augmentation 

201 helped us partly circumvent this limitation, but expanding our dataset is necessary for the near future. 

202 Moreover, we dealt with the problem of missing data by using the transfer learning technique (10). 

203 However, this may have initialized the weights for detecting object characteristics that are not present in 

204 the spectrograms as proposed by Ruffini et al. (36), which may further explain why our methodology was 

205 inefficient in generating the DME diagnosis through images of mock ERG transforms. In addition, given 

206 the effectiveness of time series from spontaneous ERG oscillations in predicting risk factors for type 2 

207 diabetes (17), the predictive value of time series data rather than images from mock ERG transforms in 

208 classifying DME and non-DME cases remains to be studied.

209

210 Our data showed that, when combined with the best mock-ERG model, the performance of the best OCT 

211 model to predict DME improved in terms of specificity, precision, Cohen's Kappa, and accuracy. However, 

212 its sensitivity has decreased. Similar observations were found with the best fundus model, being more 
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213 performant when combined with the best mock-ERG model, except for its sensitivity that remained 

214 unchanged.

215 It is recognized that mixed methods of prediction, which use multiple learning algorithms, improve the 

216 performance of predictions obtained by individual learning processes (37). As observed for analyzing 

217 sentiment in the text of low-resource languages (12) and for detecting esophageal cancer (38) by 

218 combining CNNs and support vector machine, our hybrid models provided better results than individual 

219 models to predict DME cases. It has been empirically verified that this improved performance relates to 

220 the combination of distinct model characteristics and the variability in data of different origins (24). We 

221 further believe that this improvement is partly due to the complementation of structural information with 

222 functional data (26). Structural images, like OCT and fundus, are most commonly used for retinopathy 

223 detection, including DME (39). These images are very useful when it comes to localize a lesion (40). 

224 However, their very nature gives them the intrinsic spatial resolution limit and the caregiver's ability to 

225 interpret the image. In addition, they offer a static view of the retina. In contrast, ERG provides 

226 information on retinal activity, at a global or specific level (certain layers of the retina or cell type), 

227 depending on the stimulation protocol used. ERG can inform about subtle changes long before any 

228 structural alterations can be detected using images. Nevertheless, its application which consists of 

229 exposing the subject to a series of specific light flash protocols can be time-consuming, often requires 

230 dark adaptation and sometimes mydriasis, and is not recommended for DME detection (41), even though 

231 patients with DME showed alterations in some ERG parameters (42). In this context, the predictive power 

232 of 5-minute photopic ERGs in the absence of any light flash demonstrated by our data is a huge 

233 improvement.  More particularly, scalograms obtained from the mock-ERG transforms can be considered 

234 functional images of the retina. Having both structural and functional information brings a more 

235 comprehensive view of the retinal tissue to the model, thereby improving its capacity to predict DME.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2023. ; https://doi.org/10.1101/2023.04.05.23288182doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.05.23288182
http://creativecommons.org/licenses/by/4.0/


13

236 Another issue concerns the performance metrics of the models during training and testing. Accuracy and 

237 loss metrics were quite good for both the OCT and fundus models, but not for mock ERG-derived 

238 scalogram models. The large number of OCT images used for training largely explains the training 

239 performance of the OCT models (27,28). At the same time, the good quality and the transfer learning (43–

240 45) surely benefited the eye fundus models. In contrast, mock ERG-derived scalogram models were 

241 subjected to overfitting since the accuracy of the testing exceeded that of the training (46). The small 

242 amount of data available for training (141 spectral images) is likely responsible.

243 As previously mentioned, an interesting result is that, although the hybrid models generally performed 

244 better, the single models that use OCT images as input were the most sensitive. Thanks to the vast OCT 

245 image database (>30,000 images), the training was done, using 11,598 OCT images, thereby allowing the 

246 model to extract information from a larger number of diseased subjects, facilitating the recognition of 

247 true positives (28). In contrast, only 1,011 fundus images and 846 spectral images of mock-ERG after data 

248 augmentation were available for these respective model training, likely accounting for the higher 

249 sensitivity of the OCT models. We believe that when combining the models’ probability matrices, the 

250 mock-ERG and fundus models’ low sensitivities tended to decrease the OCT models’ high sensitivities. An 

251 alternate explanation is that unlike fundus images, which only show the inner face of the posterior part 

252 of the eyeball, allowing the observation of certain structures, such as the macula or the optic disc, and 

253 provides with some qualitative information, OCT images provide quantitative information, like the retinal 

254 layer thickness, as well as the presence or the absence of subretinal or intraretinal fluid (47). This 

255 translates into a greater amount of information about the retina, increasing the sensitivity of the 

256 prediction.

257 In our view, one of the most interesting results of this work is that the performance metrics of the 

258 combined fundus plus mock ERG-derived scalogram model in the 70%:30% proportion are comparable to 

259 that of the best OCT model. Both present Cohen's Kappa greater than 0.8 and F1-score greater than 0.85, 
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260 which, as previously mentioned, are the best metrics for evaluating models with unbalanced classes (28). 

261 That the sensitivity of the OCT model is superior to the one of the hybrid model (0.93 vs. 0.88) has been 

262 discussed above. These results become particularly interesting knowing that the cost of an OCT scanner 

263 varies widely from US$35,000 to $100,000 (48). In comparison, the cost of a non-mydriatic camera range 

264 from US$10,000 to $20,000 (82) and portatile electroretinographs can be as cheap as approximately 

265 US$4,800 (49). On the eve of being certified, we also know about other ERG prototypes that could even 

266 be cheaper. The purchase of the most expensive non-mydriatic camera in conjunction with the 

267 electroretinography gives an approximate cost of US$25,000, which remains cheaper than purchasing the 

268 most economical OCT device. In general terms, performing a fundus study plus ERG is cheaper than the 

269 OCT study. Thanks to our model, this information is now helpful for DME predictive diagnosis. This is 

270 relevant because eye care is inaccessible to many people (lack of specialists, insufficient infrastructure, 

271 and transportation to clinics) (50). Our work contributes to the view that AI-based diagnostic methods can 

272 solve the problem of the lack of specialists, particularly in the eye care area (50). Furthermore, our model 

273 deals with already trained models, minimizing the computational cost. It is interesting to note that our 

274 model can even be used on mobile devices (51), further reducing the use of resources. 

275 In conclusion, using of the fundus-mock ERG hybrid model is viable and relevant for diagnosing of DME in 

276 current medical practice.
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277 Materials and Methods
278 Ethics. The ethics committee for human participants of the Mexican Institute of Ophthalmology (IMO), 

279 the National Committee of Ethics (reference: CONBIOÉTICA-09-CEI-006-20170306), and the Research 

280 Committee at the Asociación Para Evitar la Ceguera (APEC, 17 CI 09 003 142) approved this study. Written 

281 informed consent was provided by all subjects. All procedures were done according to the principles of 

282 the Helsinki Declaration. 

283 Human data. Since we are introducing a completely new parameter, namely unevoked 

284 electroretinogram (ERG) signals, for the predictive diagnosis of diabetic macular edema (DME), our study 

285 serves as a pilot survey of the population and therefore we cannot determine the sample size (18). A total 

286 of 321 adult subjects aged between 30 and 80 years (mean: 48.13 ± 0.71 years, 165 females) with or 

287 without diabetes, were enrolled between February 26, 2015 and December 2019 and from September 

288 2021 and December 12, 2023 in the IMO of Querétaro (mean age: 50.81 ± 1.57 years, 54 females) and 

289 between August 10, 2021 and March 20, 2022 in the Asociación Para Evitar la Ceguera (APEC) in Mexico 

290 City (mean age: 45.77 ± 1.20 years, 119 females). 233 (age mean: 44.31 ± 0.72 years, 118 females) 

291 completed all tests required for the current study. 

292 Subjects underwent an anamnesis and an initial optometric examination to ensure that they were eligible 

293 to participate. The exclusion criteria were ages outside 30 to 80 range, lens opacity, myopia greater than 

294 6 diopters, glaucoma or other concomitant ophthalmologic disorders, ocular anomalies (e.g., surgery, 

295 trauma), recent use of laser or anti-angiogenic intravitreal administration, and cornea problems that 

296 disable ERG recordings. All tests were performed as described in (13). Patient diagnosis for DME, diabetic 

297 retinopathy (DR), or other eye issues was established by experts at IMO (M.G.R., R.G.F., E.L.S.), APEC (H.Q. 

298 and L.F.H.Z.).

299 Electroretinogram (ERG) signals. Non-evoked ERGs were registered using customized protocols with 

300 either RETIMAX (CSO), Moonpack (Metrovision), or RETeval (LKC Technologies) electroretinographs. 
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301 Under light conditions (~400 lux), the contour of the eye and the forehead of the subject were cleaned 

302 before placing both recording and reference electrodes. ERGs consisted of 5-minute recordings in the 

303 absence of any light flash under photopic conditions (400 lux). Recording conditions included a band-pass 

304 filter of 0.3 Hz to 1 kHz and an acquisition frequency of 2 kHz. Subsequently, raw data were digitally 

305 filtered between 0.3 and 40 Hz, as previously described (17). ERGs were then divided into one-minute 

306 segments to maximize the number of samples. From the ERGs of 233 patients (151 from APEC and 82 

307 from IMO), 1,353 one-minute ERG fragments were obtained, 183 from patients with DME and 1,170 from 

308 patients without DME. 

309 As part of this nascent research, we tested both Fourier and wavelet transforms. The Fourier transform 

310 captures frequencies that persist over an entire signal, which may not serve for signals with short intervals 

311 of characteristic oscillations (19). The wavelet transform is a good alternative because it decomposes a 

312 function into a set of wavelets (20). Spectrograms were obtained from each one-minute ERG fragment 

313 using Fast Fourier Transform (FFT) with the “Multitaper Spectrogram Code” tool (21). Similarly, 

314 scalograms were generated using the Scipy 1.7.1 & MatplotLib 3.5.1 libraries for Python 3.8.8.

315 Image datasets. We used OCT images from three public datasets. Kermany’s dataset contains 11,598 

316 images with DME and 26,565 without DME (22); Srivasan’s is formed by macula-centered OCT images of 

317 DME (n = 36) and non-DME (n = 53) patients (23), and our dataset (https://github.com/Traslational-Visual-

318 Health-Laboratory) contains 1,140 OCT images: 176 images with DME and 964 without DME.

319 We used eye fundus images from four open sources, including the MESSIDOR (24), Pachade’s (25), 

320 Giancardo’s (26), and our own (https://github.com/Traslational-Visual-Health-Laboratory) datasets. 

321 Fundus images with no pathology were pooled (n = 151 from MESSIDOR, n = 180 from Pachade’s, n = 115 

322 from Giancarlo’s, and n = 495 from ours), as well as fundus images with DME (n = 1,053, only from our 

323 dataset).
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324 From the 1,353 non-evoked ERG-derived spectrogram and scalogram images, 164 were set apart for 

325 model validation: 42 with DME and 122 without DME. The remaining 141 ERG images with DME were 

326 subjected to data augmentation by modifying horizontal rotation, horizontal displacement, contrast, 

327 brightness variation, and adding salt and pepper noise, as previously described (27). After data 

328 augmentation, the non-evoked ERG-derived spectrogram and scalogram images dataset included 846 

329 images with DME and 1,048 without DME.

330 Image dataset information is summarized in Table 1.

331 Predictive models. Convolutional Neural Networks (CNN) were used, taking advantage of the transfer 

332 learning technique (10). For ERG and eye fundus images, the following CNNs were used: ResNet-50, 

333 MobileNet-V2, and DenseNet-201. For the last two models, fine-tuning was also used to add four dense 

334 layers and two layers with LSTM networks at the end of the models. OpticNet-71 was used with OCT 

335 images and a fine-tuned version of DenseNet-201. 

336 The bundles of non-evoked ERG-derived spectrogram and scalogram, fundus, and OCT images from the 

337 same patient were randomly assigned to training or test sets. A distribution percentage of 80 % training 

338 and 20 % testing was used. 

339 To verify the possibility that the ResNet-50 and DenseNet-201 models’ performance is influenced by the 

340 presence of DR, we reclassified the wavelet scalogram images used for training and testing into images 

341 with (n = 293) or without some degree of DR (n = 896). To balance classes, scalograms from cases with DR 

342 were subjected to data augmentation, as described in the Methods, leading to the generation of 879 

343 scalograms with some degree of DR. Data were randomly divided into training (80 %) and test (20 %), and 

344 the ResNet-50 and DenseNet-201 models were trained with the same parameters as described in the 

345 Methods, to compare the results between the binary classification of patients with and without DME, with 

346 the one of patients with and without DR. Validation was done using the previously used  164 images, 

347 though they were recategorized into those with some degree of DR (n = 77) and those without DR (n = 
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348 87). Table 2 summarizes the metric performance of the models trained to distinguish DR and no DR 

349 classes. All metrics exceeded 0.60, unlike the values obtained for the validation of the DME class 

350 prediction, indicating that the concomitant presence of DR with DME takes part into the poor 

351 performance of our models.

352

353

354

355

356

357

358

359

360

361 Table 2. Comparative table between the validations done for EMD classification and DR classification. In 

362 general, the metrics obtained in validation with the same models, trained during the same number of 

363 epochs, are better in validation than those of DR classification. All the metrics are above 0.60 and Cohen’s 

364 Kappa is also improved.

365

366 Hybrid model. The best-performing models for each data type (OpticNet-71 for OCT, DenseNet-201 

367 fine-tuning model trained with scalogram images, and DenseNet201-fine-tuning model for fundus images) 

368 were chosen to create a hybrid model. Predictions were obtained for each model using the 164 validation 

369 images, and the resulting prediction matrices were then multiplied by a weight factor (Figure 1). Input 
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370 data (OCT, eye fundus, and scalogram images) came from the same eye of an individual and were taken 

371 the same day. To find the best weight values, all possible value combinations were tested. The weight 

372 distribution was selected based on the combination that yielded the best results for the hybrid model 

373 (Figure 2). 

374 Algorithm performance. Models with a loss below 0.4 and accuracy above 0.8 during training and 

375 testing were selected (Table 3). To evaluate the performance of the models, 164 images from OCT, eye 

376 fundus, and ERG-derived scalograms and spectrograms alien to training and test phases were used: 42 

377 images with DME and 122 without DME in total, taken from 97 different subjects. The following metrics 

378 were calculated for each model: precision, sensitivity, specificity, accuracy, F1-score, the area under the 

379 curve (AUC) of the Receiver Operating Characteristic (ROC) curve, and Cohen’s Kappa (28). 

380

381

382

383

384

385

386

387

388

389

390

391
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392 Table 3. Models’ characteristics during training and testing, including the number of epochs for training 

393 and both the accuracy and loss after testing. OCT, optical coherence tomography images; FFT, FFT-derived 

394 spectrograms from basal ERGs; Wavelet, Wavelet transform-derived spectrograms from basal ERGs.

395

396 Code availability. To facilitate the reproducibility of our data analyses, the Python code and 

397 documentation for the analysis are available online (https://github.com/Traslational-Visual-Health-

398 Laboratory).
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538 Figure legends
539 Figure 1. Diagram showing hybrid model operation. The best validated performing models were selected 

540 for each separate type of input (basal electroretinogram (ERG) scalogram, optical coherence tomography 

541 (OCT), and eye fundus images): OpticNet-71 for OCT and finely tuned DenseNet-201 for eye fundus and 

542 basal ERG scalograms. Predictions with the aforementioned models were done for each type of input 

543 (OCT, eye fundus, or scalogram images, n = 164 cases in total) and the result was multiplied by a scalar 

544 quantity 𝑛𝑖 that represents the adjustment percentage for each model. The three resulting values were 

545 then summed up to obtain a new prediction matrix, using the predictions made by each model. The 

546 maximum value (Max value) is obtained for each matrix row, the output being 1 with diabetic macular 

547 edema (DME) and 2 without DME. 

548

549 Figure 2. Performance of the spontaneous ERG-based models to predict DME. Receiver-Operating 

550 Characteristic (ROC) curves and confusion matrixes corresponding to the (A) ResNet-50 model fed with 

551 fast Fourier Transform (FFT)-derived spectrograms, (B) finely-tuned DenseNet-201 model fed with FFT-

552 derived spectrograms, (C) ResNet-50 model fed with Wavelet Transform-derived scalograms, and (D) 

553 finely-tuned DenseNet-201 fed with Wavelet Transform-derived scalograms of spontaneous ERGs. The 

554 validation dataset included n = 42 cases with DME and n = 122 cases without DME. (E) Summary of all 

555 above-models’ performance metrics. 

556

557 Figure 3. Optimization of hybrid models. Heatmaps showing the performance metrics of double and triple 

558 hybrid models, according to the proportion assigned to each used models, i.e. (A) OCT and eye fundus 

559 images, (B) OCT and basal ERG-derived scalogram images, (C) eye fundus and ERG-derived images, and 

560 (D) all three different types of data, as indicated by the percentages in the X-axis. All combinations 

561 summed up to 100 %. For the triple hybrid model (D), the remanent percentage of each 10 %-subdivision 
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562 of the OCT-axis (e.g. 60 % in the case of 40 % assigned to OCT) is divided between eye fundus and ERG-

563 derived images, as indicated in the two lower X-axes. Optimizers looked for the optimal 𝑛1, 𝑛2, 𝑛3 values, 

564 as introduced in Figure 2. 

565

566 Figure 4. DME-predicting models’ comparison. Heatmap showing the performance metrics obtained for 

567 each tested models, including the ones based on one type of input (OCT, eye fundus or ERG-derived 

568 images), as well as double and triple hybrid models. External validation dataset: n = 42 for DME and n = 

569 122 without DME. 

570

571 Supporting information
572 S1 figure. Performance of all OCT models. ROC curves and confusion matrixes for the (A) OpticNet-71 

573 model validated with n = 1,229 cases (n = 212 with DME and n = 1,017 without DME), (B) the Finely-tuned 

574 DenseNet-201 model validated with n = 1229 (n = 212 with DME and n = 1,017 without DME), (C) the 

575 OpticNet-71 model validated with n = 164 (n = 42 with DME and n = 122 without DME), and (D) the finely-

576 tuned DenseNet-201 model validated with n = 1,229 (n = 212 with DME and n = 1017 without DME). (D) 

577 Summary of all above-models’ performance metrics. 

578

579 S2 figure. Performance of the Eye Fundus-based model. ROC curves, confusion matrixes, and performance 

580 metrics for the (A) ResNet-50, (B) finely-tuned MobileNet-V2, and (C) finely-tuned DenseNet-201 models. 

581 The validation dataset included a total of 164 eye fundus images (n = 42 with DME and n = 122 without 

582 DME).
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