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Abstract
Background To develop machine learning models for objectively evaluating visual acuity (VA) based on pattern-
reversal visual evoked potentials (PRVEPs) and other related visual parameters.

Methods Twenty-four volunteers were recruited and forty-eight eyes were divided into four groups of 1.0, 0.8, 0.6, 
and 0.4 (decimal vision). The relationship between VA, peak time, or amplitude of P100 recorded at 5.7°, 2.6°, 1°, 34′, 
15′, and 7′ check sizes were analyzed using repeated-measures analysis of variance. Correlations between VA and 
P100, contrast sensitivity (CS), refractive error, wavefront aberrations, and visual field were analyzed by rank correlation. 
Based on meaningful P100 peak time, P100 amplitude, and other related visual parameters, four machine learning 
algorithms and an ensemble classification algorithm were used to construct objective assessment models for VA. 
Receiver operating characteristic (ROC) curves were used to compare the efficacy of different models by repeated 
sampling comparisons and ten-fold cross-validation.

Results The main effects of P100 peak time and amplitude between different VA and check sizes were statistically 
significant (all P < 0.05). Except amplitude at 2.6° and 5.7°, VA was negatively correlated with peak time and positively 
correlated with amplitude. The peak time initially shortened with increasing check size and gradually lengthened 
after the minimum value was reached at 1°. At the 1° check size, there were statistically significant differences when 
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Background
Visual acuity (VA) examination, one of the most basic 
tests for visual function, is divided into subjective and 
objective examination methods. The subjective ways are 
simple and easy to perform using various visual acuity 
charts. However, these methods require a high degree of 
patient cooperation. Infants, children with cerebral visual 
impairment, pseudo-blindness and hysterical patients 
need an objective VA assessment method, a classic com-
mon challenge for ophthalmologists. Likewise, this 
assessment technology is also required for the VA identi-
fication of flight personnel.

Pattern-reversal visual-evoked potentials (PRVEPs) are 
a cluster of bioelectrical signals generated in the visual 
cortex located in the brain’s occipital lobe after graphic 
visual stimulus. They are waveforms recorded by regu-
lar graphic stimulation of the subject and processed by 
applying computerized averaging and superimposition 
techniques. The P100 wave is the first positive wave to 
appear in PRVEPs. It includes peak time and amplitude 
evaluation elements, with low variability across subjects 
and a strong relationship with VA. PRVEPs are mainly 
applied in patients who are unable or unwilling to com-
plete a subjective VA examination and those with cog-
nitive deficits. They are widely used in the assessment 
of optic neuropathy [1–3] and functional visual loss [4], 
in the identification of malingering [5], and in the early 
diagnosis and prognostication of multiple sclerosis [6–8]. 
Over the years, several reports have demonstrated that 
using the visual-evoked potential technique to detect the 
completeness of visual pathways has been widely rec-
ognized in ophthalmology [9, 10]. However, most prior 
studies on the objective assessment of VA have focus on 
normal VA or best-corrected VA; there is little informa-
tion in the literature on the effect of reduced VA caused 
by refractive error alone on the PRVEPs waveform [10, 
11]. When visual acuity was greater than Snellen 20/100, 
there was a good correlation between subjective VA and 
PRVEP-estimated VA and dioptric blur would diminish 
the PRVEP responses to smaller pattern elements more 
than to larger ones [12]. In addition, it has been shown 
that the correlation between PRVEP-estimated VA and 

subjective VA in patients with organic ocular pathology 
is less than that in subjects with refractive error only [12]. 
VA is also related to visual parameters such as contrast 
sensitivity (CS), refractive error, wavefront aberrations, 
and visual field [13–16]. Therefore, we studied the cor-
relation of these parameters with VA and incorporated 
them into machine modeling with the P100 of PRVEPs. 
As a subfield of artificial intelligence, machine learning 
has been increasingly applied to medical practice since it 
can extract deeper features from raw data and combine 
several predictors in a highly interactive manner [17]. In 
recent years, machine learning algorithms have become 
more prevalent in the diagnosis and prognostication of 
many ophthalmic diseases [18–20].

This study focused on the relationship between VA 
and visual parameters, including PRVEPs, CS, refractive 
error, wavefront aberrations, and visual field. We were 
using machine learning algorithms to explore a feasible 
objective examination and assessment method for VA to 
provide theoretical support and an experimental basis 
for improving the quality of vision assessment for special 
operation staff, such as pilots.

Methods and subjects
Subjects
Twenty-four male subjects from Air Force Medical 
University were recruited; their ages ranged from 20 to 
35 (mean 27.75 ± 4.33) years. The inclusion criteria for 
selecting participants were as follows: spherical degree 
(D) − 2.00 D ~ + 2.50 D, cylindrical degree − 1.00 D ~ + 1.00 
D, and best-corrected VA ≥ 1.0 (decimal vision). The 
exclusion criteria were a history of refractive surgery, 
central nervous system disease, glaucoma, diabetic reti-
nopathy, and other organic ocular diseases. The experi-
ments were conducted in the same laboratory under the 
same luminance environment, and all subjects rested 
and adapted to the light environment for 10 min before 
the examination. An automated, computerized refrac-
tive examiner (KR-8100PA, Topcon, Japan) was used to 
detect the subjects’ refractive condition. First, the refrac-
tive error of the subjects was examined. After meeting 
the criteria, twenty-four subjects were randomly divided 

comparing the peak times between the vision groups with each other (all P < 0.05), and the amplitudes of the vision 
reduction groups were significantly lower than that of the 1.0 vision group (all P < 0.01). The correlations between 
peak time, amplitude, and visual acuity were all highest at 1° (rs = − 0.740, 0.438). VA positively correlated with CS and 
spherical equivalent (all P < 0.001). There was a negative correlation between VA and coma aberrations (P < 0.05). For 
different binarization classifications of VA, the classifier models with the best assessment efficacy all had the mean 
area under the ROC curves (AUC) above 0.95 for 500 replicate samples and above 0.84 for ten-fold cross-validation.

Conclusions Machine learning models established by meaning visual parameters related to visual acuity can assist in 
the objective evaluation of VA.

Keywords Visual acuity, Visual-evoked potentials, Refractive error, Aircrew, Machine learning
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into four groups: 1.0/1.0, 0.8/0.8, 0.6/0.6, and 0.4/0.4 
(decimal vision). Six subjects and twelve eyes were in 
each group. Second, subjects were checked for monocu-
lar VA at 5  m using a standard logarithmic visual acu-
ity E chart with 96% contrast in a 200 cd/m2 luminance 
lightbox. Finally, the subjects were corrected to the corre-
sponding VA using the subjective insertion method with 
appropriate lenses.

Pattern visual evoked potential
The VEP stimulated by reversal checkerboard patterns 
was recorded using the Visual Electrophysiology System 
(LS-D1, ChongQing Sunkingdom, China). The field size 
of the checkerboard stimulus was 375 × 300 mm, the con-
trast of the checkerboard was 96%, and the average lumi-
nance of the screen was 120 cd/m2. Each subject sat 1 m 
from a black-and-white checkerboard monitor in a mod-
erately lit room, with their eyes at the same height as the 
center of the screen. The reversal rate was two reversals 
per second. Monocular PRVEPs of both eyes (first the 
right, then the left) were recorded using gold disc scalp 
electrodes with an average of 100 stimulations. Accord-
ing to the International Society for Clinical Electro-
physiology of Vision standard [21], the active electrode 
was placed at Oz with the reference electrode at Fz, and 
the ground electrode at the right earlobe, all with inter-
electrode impedance < 5 kΩ. Six sizes of checkerboard 
patterns (5.7°, 2.6°, 1°, 34′, 15′ and 7′ check sizes) were 
tested in each eye, with 1 to 2 min of rest between each 
examination with the eyes closed. Throughout the test, 
the examiner closely monitored the participants’ fixation 
on a red marker at the center of the screen. Each eye was 
examined at least two times at each check size, and simi-
lar graphs were considered reliable. The entire PRVEPs 
examination was 20 ~ 30 min for each subject.

Other visual parameters
CS examinations were performed by MetroVision (Mon-
Pack one, Perenchies, France) under photopic conditions 
(80  cd/m2) while the patient was sitting 2  m away from 
the screen, with one eye of the corrective lenses. Spatial 
frequencies of 0.6, 1.1, 2.2, 3.4, 7.1, and 14.2 cycle per 
degree (cpd) were tested. The refractive error was calcu-
lated from the refractive error of the bare eye and the cor-
rective lenses. Spherical equivalent (SE) was calculated 
using the standard formula (spherical equivalent = spheri-
cal power + [cylinder power/2]). Wavefront aberrations 
for a 4 mm pupil were tested by the OPD-Scan III aber-
rometer (Nidek, Gamagori, Japan). To avoid the influence 
of lenses on the examination, we recorded the root-
mean-square (RMS) values for the total higher-order 
aberrations (HoA), total coma aberrations (CA), total tre-
foil aberrations (TA), and total spherical aberrations (SA) 
in the naked eye. The visual field was determined using 

a Humphrey Field Analyzer 750i (Zeiss Humphrey Sys-
tems, Dublin, CA). The central 30 − 2 threshold protocol 
was performed in each eye with the corrective lenses. 
The absolute values of mean deviation (MD) and pattern 
standard deviation (PSD) were recorded for statistical 
analysis.

Statistical analysis
SPSS version 21.0 (IBM, USA) was used for statisti-
cal analysis. Measurement data were expressed as 
mean ± standard deviation (−

x ± s). Kolmogorov-smirnov 
test was conducted on the data, and the results showed 
that the data conformed to the normal distribution. Sta-
tistical analyses were performed using repeated-mea-
sures analysis of variance (ANOVA) and rank correlation 
with a significance level of 5%. The univariate ANOVA 
method was used if the sphericity test was satisfied. 
Otherwise, the multivariate ANOVA method was used. 
Further two-by-two comparisons were carried out using 
the least significant difference test. Subjective VA was 
binarized using 1.0, 0.8, and 0.6 VA as cutoff points, and 
the mean area under the ROC curves (AUC) was used to 
compare the performances of different models based on 
meaningful objective visual parameters.

Machine learning modeling
Machine learning models are computer programs used to 
recognize patterns in data or make predictions. The mod-
els are created from machine learning algorithms, which 
are trained using labeled, unlabeled, or mixed data. Dif-
ferent machine learning algorithms are suited to differ-
ent goals, such as classification or prediction modeling, 
so data analysts use different algorithms as the basis for 
different models.

Based on the Scikit Learn machine learning algorithm 
package in Python, the P100 and other visual parameters 
related to VA were used as input variables, and the bina-
rized VA divided by different VA cutoffs (1.0, 0.8, and 0.6) 
were used as output variables to construct classification 
models by support vector machine (SVM), random forest 
(RF), K-nearest neighbor (KNN), multilayer perceptron 
(MLP), and Voting. Hybrid Classifier uses a combination 
of different classifiers to make a common decision. Vot-
ing is a common method of classifier ensemble, aggre-
gating the predictions of each basic classifier and using 
the one with the most votes as the final prediction. Vot-
ing has the advantage of achieving better results than 
individual classifiers by complementing the strengths of 
each basic classifier. In this study, a voting classifier was 
constructed as shown in Fig. 1. It utilizes SVM, RF, KNN, 
and MLP as the basic classifiers to obtain the final predic-
tion based on the voting results. The classification perfor-
mance of the models was compared. On one hand, 70% 
of the 48-sample data were selected as the training set 
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and 30% as the test set, and the training test was repeat-
edly sampled 500 times to compare the mean AUC of 
each classification model. On the other hand, ten-fold 
cross-validation was performed on the 48-sample data to 
compare the accuracy, sensitivity, specificity, and other 
parameters of different classification models. In the ten-
fold cross-validation, the 48-sample data were randomly 
divided into 10 parts, and when one part was used as the 
validation set, the other 9 parts were used as the training 
set, and the same binary classification of “good” and “bad” 
visual acuity was performed. The 10 samples were cross-
trained and validated 10 times, and the results of the ten-
fold cross-validation of each model were obtained. The 
accuracy, sensitivity and specificity of the classification 
were compared.

Results
P100 peak time versus VA at different check sizes
There was a statistically significant difference in the 
main effect in P100 peak time between the different VA 
groups (F = 14.969, P < 0.001) and the different check 
sizes (F = 61.386, P < 0.001) and no statistically signifi-
cant difference in the interaction between VA and check 
size (F = 0.967, P > 0.05). Overall, the peak time tended 
to increase with a decrease in VA, and the peak time of 
the 1.0 vision group was the shortest (101.15 ± 8.69). The 
peak time decreased with increasing check size, reaching 

the minimum value at 1° (97.73 ± 3.55). Further statisti-
cal tests revealed statistically significant differences when 
comparing the peak time between the vision groups with 
each other at 1° (all P < 0.05). It can be seen that com-
pared with 1.0 vision, the P100 peak time of 0.4 vision at 
7′ and 2.6°, that of 0.8 vision at 15′, those of the vision 
reduction groups at 34′, those of 0.6 vision at 2.6° and 5.7° 
were increased significantly (all P < 0.05) (Fig. 2). Figure 3 
showed the waveforms of PRVEPs at 7′ and 1° check sizes 
of different VA.

P100 amplitude versus VA at different check sizes
There was a statistically significant main effect dif-
ference in P100 amplitude between the different VA 
groups (F = 3.153, P = 0.034) and the different check sizes 
(F = 27.155, P < 0.001) and a statistically significant dif-
ference in the interaction between VA and the check 
size (F = 1.955, P = 0.024). Overall, the amplitude tended 
to decline with a decrease in VA. The amplitude of the 
1.0 vision group (7.98 ± 2.52) was the highest among 
all groups and the amplitude of the 15′ (7.86 ± 2.92) 
was the highest among all check sizes. At the 7′ and 1° 
check sizes, the amplitude of the vision reduction groups 
decreased significantly compared to that of the 1.0 vision 
group (all P < 0.05). At the 15′ and 34′ check sizes, the 
amplitude of the 0.4 vision group decreased significantly 

Fig. 1 Hybrid classifier based on voting, which utilized support vector machine (SVM), random forest (RF), K-nearest neighbor (KNN), and multilayer 
perceptron (MLP) as the basic classifiers
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Fig. 3 PRVEP waveforms of different vision. A: PRVEP waveforms at 7’ check size of different vision; B: PRVEP waveforms at 1° check size of different vision

 

Fig. 2 Group graph of comparison of P100 peak time of various VA at different check sizes (n = 48). *P < 0.05, **P < 0.01, ***P < 0.001. The P100 peak time of 
different VA at 7′ (A), 15′ (B), 34′ (C), 1° (D), 2.6° (E), and 5.7° (F)
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compared to that of the 1.0 vision group (all P < 0.05) 
(Fig. 4).

Correlation analysis of P100 peak time and amplitude 
versus VA
There was a negative correlation between P100 peak time 
and VA at all check size (all P < 0.05). Namely, the higher 
the VA, the shorter the peak time at the same check sizes, 
with the highest correlation at 1° check size (rs = − 0.740) 
(Fig. 5- A, B, C). Except for the 2.6° and 5.7° check sizes, 
there was a positive correlation between the P100 ampli-
tude and VA at all check sizes (all P < 0.05), which means 
that the higher the VA, the higher the magnitude at the 
same check size, especially at the 1° check size (rs = 0.438) 
(Fig. 5- D, E, F).

Correlation analysis of CS, refractive error, wavefront 
aberrations and visual field versus VA
Figure 6 (A, B, C) shows correlation coefficients relating 
VA to CS in the spatial frequencies ranging from 0.6 cpd 
to 14.2 cpd. There was a positive correlation between VA 
and CS with all spatial frequencies (all P < 0.001) and high 
spatial frequencies (7.1 cpd and 14.2 cpd) generally had a 

stronger relationship to VA (rs = 0.815, 0.800) than other 
low spatial frequencies. Figure 6- D showed that SE and 
VA had a statistically significant correlation (rs = 0.815, 
P < 0.001). There was a negative correlation between VA 
and CA (rs = − 0.299, P = 0.039), but not with HoA, TA, 
and SA (Fig. 6- E, F). There was no significant correlation 
between VA and the absolute values of both MD and PSD 
for the visual field (Fig. 6- G).

Construction of classification models for objective 
evaluation of VA
Several classification models were constructed using 
machine learning algorithms such as SVM, RF, KNN, 
MLP, and Voting. The P100, CS, SE, and CA related to 
VA were input variables and binarized VA divided by dif-
ferent VA cutoff points were output variables. The means 
and standard deviations of the AUC values of the five 
models were obtained by training and testing with 500 
replicate sampling (Table 1). For different visual acuities, 
the individual classifier models with the best assessment 
efficacy all had mean AUC values above 0.95. Simi-
larly, the Voting classifier achieves the same assessment 
performance.

Fig. 4 Group graph of comparison of P100 amplitude of various VA at different check sizes (n = 48). *P < 0.05, **P < 0.01, ***P < 0.001. The P100 amplitude of 
different VA at 7′ (A), 15′ (B), 34′ (C), 1° (D), 2.6° (E), and 5.7° (F)
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We also compared the classification performances of 
the ten-fold cross-validation of the five models for 48 
samples (Table  2; Fig.  7). In the classification models of 
distinguishing between 1.0 and 0.8, 0.6, and 0.4 at the VA 
level, the SVM classifier performed well with an accuracy 
of 89.58%, sensitivity of 91.67%, specificity of 83.33%, and 
AUC value of 0.8750. In the classification models of dis-
tinguishing between 1.0 and 0.8 from 0.6 to 0.4 of VA, 
the Voting classifier performed well with an accuracy 
of 93.75%, sensitivity of 91.67%, specificity of 95.83%, 

and AUC value of 0.9375. In the classification models of 
distinguishing between 1.0, 0.8, and 0.6 from 0.4 at the 
VA level, the Voting classifier performed best with an 
accuracy of 89.58%, sensitivity of 75.00%, specificity of 
94.44%, and AUC value of 0.8472.

Discussion
The results of this study showed that with the decrease of 
VA, the P100 peak time tended to lengthen and the P100 
amplitude tended to decrease. The peak time reflects the 

Fig. 5 Group graph of correlation of P100 peak time and amplitude versus VA at different check sizes (n = 48). The relationships between VA and P100 
peak time at 7′, 15′ (A), 34′, 1° (B), 2.6°, and 5.7° (C) and P100 amplitude at 7′, 15′ (D), 34′, 1° (E), 2.6°, and 5.7° (F). Lines represent least-squares linear model 
fits to the data. rs, Spearman rank correlation coefficient
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Fig. 6 Group graph of correlation of CS, SE, wavefront aberrations and visual field versus VA (n = 48). The relationships between VA and CS of 0.6 cpd, 
1.1 cpd (A), 2.2 cpd, 3.4 cpd (B), 7.1 cpd, and 14.2 cpd (C). The relationships between VA and SE (D), HoA, CA (E), TA, SA (F), MD, and PSD (G). Lines represent 
least-squares linear model fits to the data. rs, Spearman rank correlation coefficient. CS, contrast sensitivity; SE, spherical equivalent; VA, visual acuity; HoA, 
higher-order aberrations; CA, coma aberrations; TA, trefoil aberrations; SA, spherical aberrations; MD, mean deviation; PSD, pattern standard deviation
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optic nerve conduction function of the subject eye: the 
longer the peak time, the slower the nerve conduction 
speed. The amplitude reflects the number of neurons that 
generate electrical activity in the human eye respond-
ing to picture stimulus [22]: the lower the amplitude, the 
fewer the neurons stimulated. As a result, when vision 

decreases due to refractive error, the image projected 
onto the retina becomes blurred and the optic nerve 
pathway becomes less responsive to stimuli, eventually 
leading to longer peak times and decreased amplitude. 
The stimulus check size was “non-linear” to the peak 
time and amplitude. The shortest peak time was observed 

Table 1 Comparison of AUC for 500 replicate samples of machine learning classification models for different VA objective assessment 
(−x ± s, n = 48)
Cutoff point AUC mean value

SVM RF KNN MLP Voting
1.0 0.9789 ± 0.0339 0.9827 ± 0.0306 0.9125 ± 0.0671 0.9010 ± 0.0750 0.9795 ± 0.0344

0.8 0.9450 ± 0.0503 0.9891 ± 0.0187 0.9793 ± 0.0300 0.8988 ± 0.1693 0.9869 ± 0.0202

0.6 0.9640 ± 0.0478 0.9485 ± 0.0523 0.9438 ± 0.0527 0.8751 ± 0.0909 0.9558 ± 0.0504
AUC, area under the receiver operating characteristic curves; SVM, support vector machine; RF, random forest; KNN, K-nearest neighbor; MLP, multilayer perceptron.

Table 2 Comparison of the effectiveness of ten-fold cross-validation of machine learning classification models for different VA 
objective assessments (n = 48)
Cutoff point Classification 

model
Accuracy Sensitivity Specificity Positive predictive 

value
Negative 
predic-
tive value

1.0 SVM 0.8958 0.9167 0.8333 0.9429 0.7692

RF 0.9167 1.0000 0.6667 0.9000 1.0000

KNN 0.8750 0.9444 0.6667 0.8947 0.8000

MLP 0.8333 0.9167 0.5833 0.8684 0.7000

Voting 0.9167 1.0000 0.6667 0.9000 1.0000

0.8 SVM 0.8125 0.7917 0.8333 0.8261 0.8000

RF 0.9167 0.9167 0.9167 0.9167 0.9167

KNN 0.9375 0.8750 1.0000 1.0000 0.8889

MLP 0.8958 0.8750 0.9167 0.9130 0.8800

Voting 0.9375 0.9167 0.9583 0.9565 0.9200

0.6 SVM 0.8958 0.6667 0.9722 0.8889 0.8974

RF 0.8542 0.5833 0.9444 0.7778 0.8718

KNN 0.8750 0.6667 0.9444 0.8000 0.8947

MLP 0.8542 0.7500 0.8889 0.6923 0.9143

Voting 0.8958 0.7500 0.9444 0.8182 0.9189
AUC, area under the receiver operating characteristic curves; SVM, support vector machine; RF, random forest; KNN, K-nearest neighbor; MLP, multilayer perceptron.

Fig. 7 Group graph of ROC curves of ten-fold cross-validation of machine learning classification models (n = 48). The ROC curves of distinguishing 1.0 
from 0.8, 0.6, and 0.4 (A), 1.0 and 0.8 from 0.6 and 0.4 (B), 1.0, 0.8, and 0.6 from 0.4 (C). The 95% CI of the AUC value has been demonstrated in the figures. 
AUC, area under the receiver operating characteristic curves; SVM, support vector machine; RF, random forest; KNN, K-nearest neighbor; MLP, multilayer 
perceptron
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at 1° and the peak time increased gradually with the 
change of the check size. This finding was similar to those 
of Chen and her colleagues [11], who observed that when 
the VA is less than 0.2, the peak time is shortest at the 1° 
check size. Kurita-Tashima [23] found a curvilinear rela-
tionship between the P100 peak time and the check size 
in normal-vision subjects, with a minimum peak time at 
35′. Steele et al. [12] studied the relationship between six 
check sizes from 96′ to 2′ and the amplitude and found 
that the maximum amplitude occurred at the 12′ check 
size. Consistent with their research, we also observed that 
the amplitude of the 15′ check size was higher than other 
check sizes. A possible explanation for these results may 
be that the edges of the stimulus pattern become blurred 
when the stimulus check size is small, resulting in a delay 
in peak time and a decrease in amplitude. Interestingly, 
we found that the correlations between P100 peak time, 
amplitude, and VA were highest at the 1° check size. It 
seems that greater efficacy of assessing visual acuity using 
peak time and amplitude of PRVEPs with 1° check size. 
This may be because the tests included subjects with dif-
ferent visual acuities and the 1° check size was moder-
ate and appropriate for the central retinal area of these 
visual acuity individuals. Sun et al. [5] revealed a good 
correlation between VA and medium checkerboard size, 
especially at the 50′ check size, by examining PRVEPs 
to identify malingering. It has also been reported that a 
15′ or 1° check size is better for studying visual-evoked 
potentials in hereditary optic neuropathy [24]. These dif-
ferences may be partly explained by the various selection 
of the subject groups and the stimulus parameters. In 
addition, the International Society for Clinical Electro-
physiology of Vision recommends 1° and 15′ as common 
stimulation check sizes for PRVEPs examinations [21].

The following methods have been reported to use 
PRVEPs to assess objective VA [25]: (1) converting the 
minimum check size of the recordable waveform into 
VA; (2) determining the spatial frequency that produces 
the optimal peak time and amplitude; (3) making a lin-
ear regression equation of amplitude-check size, extrapo-
lating the amplitude to 0 µv, and taking the cutoff value; 
(4) evaluating the peak time and amplitude of the bin-
ocular VEP together; and (5) determining the absolute 
value of P100 parameters. A review study by Hamilton 
et al. [10] considered that direct conversion of the per-
spective of PRVEPs threshold stimuli to subjective VA is 
inaccurate. For one thing, subjective VA tests use a fixed 
target, whereas PRVEPs are dynamic and continuous 
visual stimuli. For another, the higher cognitive cortex is 
involved in the subjective VA tests, but the PRVEPs are 
only cellular activities of the primary visual cortex. Jeon 
et al. [26] found a significant positive correlation between 
P100 amplitude and VA in normal and amblyopic indi-
viduals. By plotting ROC curves, they determined that 

an absolute amplitude value > 5.77 µv helped distinguish 
between visual disability and malingering. However, 
due to individual variability in examining PRVEPs and 
the influence of various check parameters (such as pat-
tern contrast, pattern size, average luminance, signal fil-
tering, patient age, and pupil size), there may be some 
error in inferring VA from the absolute value of the P100 
peak time or amplitude for a single check size. In addi-
tion, wavefront aberration, CS, refractive error, and visual 
field are also closely related to VA. The minimum angle 
of resolution (MAR) varied linearly with the magnitude 
of wavefront aberration [14]. Correcting wavefront aber-
ration can improve mesopic CS and improve the quality 
of long-distance vision [27, 28]. Higher-order aberra-
tions were associated with diminished visual acuity and 
perception in highly aberrated eyes [29]. Far visual acu-
ity (logMAR) significantly correlates negatively with peak 
CS [13]. There was a correlation between the visual field 
mean deviation and VA in patients with glaucoma [16]. 
This study similarly found a correlation between CS, SE, 
and CA and visual acuity. Some of the discrepancies in 
results may be due to differences in subject populations.

Yperman et al. [30] found that the machine learning 
model based on visual-evoked potentials showed good 
predictive performance in analyzing disease progres-
sion in multiple sclerosis. Bach et al. [31] assessed objec-
tive VA with 89 machine learning algorithms based on 
steady-state brief-onset low-contrast checkerboard stim-
ulation evoked potentials. They found that nearly half 
of the machine algorithms obtained higher agreement 
between subjective and objective VA than traditional 
heuristics and were more widely used and testable. They 
concluded that the machine learning approach is a useful 
alternative to traditional VA assessment. In contrast, we 
built five machine learning models based on combining 
the P100 values of multiple check sizes and other visual 
parameters (CS, SE, and CA) correlating with visual acu-
ity to assess VA objectively. The performance of machine 
learning models was evaluated internally by ROC curves 
with the random split and the ten-fold crossover. The 
results of the study showed that in the internal validation 
results of machine learning models distinguishing differ-
ent VA, the average AUC values of the 500 random split 
validations of the models with better evaluation perfor-
mance were above 0.95 (Table 1), and the AUC values of 
ten-fold cross-validations were above 0.84 (Fig. 7). Both 
the single machine learning model and the ensemble 
classifier method (Voting) showed better evaluation per-
formance. Voting exhibited evaluation performance that 
was superior or approximate to that of a single model. 
However, this study only performed an internal valida-
tion and comparison of the evaluation performances of 
different models. Which model has a more powerful gen-
eralization capability and which pattern performs better 
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in objective evaluation of VA based on multiple visual 
parameters or a single visual parameter needs to be com-
pared by the external validation of the model in subse-
quent studies. Nevertheless, the results of the internal 
validation of the models obtained in our current study 
indicated that the performance of objective assessment 
for VA through the parameters of P100, CS, SE, and CA 
was satisfactory.

Our study had several limitations that need to be con-
sidered. Firstly, the study sample size was small and only 
four VA points were selected. The machine learning 
model could not evaluate VA outside the modeling data, 
which means that a new VA evaluation model must be 
established when assessing the other VAs is needed. Sec-
ondly, the subjects in this trial were all male, and it has 
been shown that the standard values of the P100 peak 
time and amplitude of PRVEPs differ between genders 
[32]. Finally, our current experiment focuses on visual 
acuity assessment in subjects with vision loss due to 
refractive error, and further research is needed for visual 
acuity assessment in visual system disorders. Conse-
quently, it is necessary to increase and enrich the groups 
and expand the range of VA to improve the availability of 
the test results and the reliability of the method.

Conclusions
In conclusion, the correlations between P100 peak time, 
amplitude, and VA were highest at the 1° check size. 
There were positive correlations between CS, SE, and VA 
and a negative correlation between CA and VA. Further-
more, the classification models with AUC values above 
0.84 were available in various VA cutoff point divisions. 
Machine learning classification models based on PRVEPs 
and other visual parameters appear to be an effective 
approach to the intelligent assistance of VA evaluation.
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